Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 2

\(\mathrm{A}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]\), then \(A^{n}\) is (a) \(\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]\) (b) \(\left[\begin{array}{cc}3^{n} & (-4)^{n} \\ 1 & (-1)^{n}\end{array}\right]\) (c) \(\left[\begin{array}{ll}1+3 n & 1-4 n \\ 1+n & 1-n\end{array}\right]\) (d) \(\left[\begin{array}{ll}1+2 n & -4 n \\ 1+n & 1-2 n\end{array}\right]\)

Problem 3

The inverse of the matrix \(\left[\begin{array}{rrr}-0.5 & 0 & 0 \\ 0 & 4 & 0 \\\ 0 & 0 & 1\end{array}\right]\) in (a) \(\left[\begin{array}{rrr}0.5 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1\end{array}\right]\) (b) \(\left[\begin{array}{rrr}0.5 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1\end{array}\right]\) (c) \(\left[\begin{array}{lll}-2 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 1\end{array}\right]\) (d) \(\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -0.25 & 0 \\ 0 & 0 & -1\end{array}\right]\)

Problem 4

If \(A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\) and \(B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 3 \\\ 0 & 0 & 2\end{array}\right]\), then the determinant \(A B\) has the value (a) 4 (b) 8 (c) 16 (d) 32

Problem 5

The system of equations \(x+2 y+z=9,2 x+y+3 z=7\) can be expressed as (a) \(\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]=\left[\begin{array}{c}9 \\\ 7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\) (b) \(\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]=\left[\begin{array}{l}9 \\\ 7\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\) (c) \(\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 7\end{array}\right]\) (d) none of the above.

Problem 6

If \(\left[\begin{array}{ll}5 & 4 \\ 1 & 1\end{array}\right] X=\left[\begin{array}{rr}1 & -2 \\ 1 & 3\end{array}\right]\), then \(X\) equals (a) \(\left[\begin{array}{rr}-3 & -14 \\ 4 & 17\end{array}\right]\) (b) \(\left[\begin{array}{rr}1 & -2 \\ 3 & 1\end{array}\right]\) (c) \(\left[\begin{array}{rr}1 & 3 \\ -2 & 1\end{array}\right]\) (d) \(\left[\begin{array}{ll}3 & -14 \\ 4 & -17\end{array}\right]\)

Problem 8

If \(8 x+2 y+z=0, x+4 y+z=0,2 x+y+4 z=0\), be a system of equations, then \((a)\) it is inconsistent (b) it has only the trivial solution \(x=0, y=0, z=0\). (c) it can be reduced to a single equation and so a selution does not exist. (d) determinant of the matrix of coefficients is rero.

Problem 9

If \(A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\) and \(C=\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\), then \((a) C=A \cos \theta-B \sin \theta\) (b) \(C=A \cdot \sin \theta+B \cos \theta\) (c) \(C=A \sin \theta-B \cos \theta\) (d) \(C=A \cos \theta+B \sin \theta\).

Problem 10

Let \(A=\left[\begin{array}{lll}1 & 0 & 0 \\ \alpha & 1 & 0 \\ \beta & \gamma & 1\end{array}\right]\) and \(B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\\ 3 & 4 & 1\end{array}\right]\), then (a) \(A\) is row equivalent to \(B\) only when \(\alpha=2, \beta=3\), and \(\gamma=4\) (b) A is mow equivalent to \(B\) only when \(\alpha \neq 0, \beta \neq 0\), and \(\gamma=0\) (c) \(\mathrm{A}\) is not row equivalent to \(B\) (d) \(A\) is row equivalent to \(B\) for all value of \(\alpha, \beta, \gamma\).

Problem 11

If \(A\left[\begin{array}{rr}0 & 1 \\ 2 & -1\end{array}\right]=\left[\begin{array}{rr}2 & 1 \\ -1 & 0\end{array}\right]\) where \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\), then \(A\) is (a) \(\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right]\) (b) \(\left[\begin{array}{rr}0 & 1 \\ 2 & -1\end{array}\right]\) (c) \(\left[\begin{array}{rr}2 & 1 \\ -1 & 0\end{array}\right]\) (d) \(\left[\begin{array}{cc}2 & 1 \\ -1 / 2 & -1 / 2\end{array}\right]\)

Problem 14

If every minor of order \(r\) of a matrix \(A\) is zero, then rank of \(A\) is (a) greater than \(r\) (b) equal to \(r\) (c) less than or equal to \(r\) (d) less than \(r\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks