Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

a. List twelve points, each with integer coordinates, that are 5 units from (-8, 1).

b. Find an equation of the circle containing these points.

Short Answer

Expert verified
  1. The twelve points from the point (-8, 1) are: (โˆ’8,โˆ’6),(โˆ’8,โˆ’4),(โˆ’11,5),(โˆ’11,โˆ’3),(โˆ’12,4),(โˆ’12,โˆ’2),(โˆ’3,1),(โˆ’13,1),(โˆ’4,4),(โˆ’4,โˆ’2),(โˆ’5,5),(โˆ’5,โˆ’3)
  2. The equation is(x+8)2+yโˆ’12=25

Step by step solution

01

a.Step-1 โ€“ Given

Given that the coordinates are 5 units from (-8, 1).

02

Step-2 โ€“ To determine

We have to find the twelve points with integer coordinates.

03

Step-3 โ€“ Calculation

(โˆ’8,โˆ’6),(โˆ’8,โˆ’4),(โˆ’11,5),(โˆ’11,โˆ’3),(โˆ’12,4),(โˆ’12,โˆ’2),(โˆ’3,1),(โˆ’13,1),(โˆ’4,4),(โˆ’4,โˆ’2),(โˆ’5,5),(โˆ’5,โˆ’3)The given point is (-8, 1),

We will add suitable points in order to get the points that are 5 units from (-8, 1).

First point:

C1=โˆ’8,1+0,5C1=โˆ’8,โˆ’6

Second point:

C2=โˆ’8,1+0,โˆ’5C2=โˆ’8,โˆ’4

Third point:

C3=โˆ’8,1+โˆ’3,4C3=โˆ’11,5

Fourth point:

C4=โˆ’8,1+โˆ’3,โˆ’4C4=โˆ’11,โˆ’3

Fifth point:

C5=โˆ’8,1+โˆ’4,3C5=โˆ’12,4

Sixth point:

C6=โˆ’8,1+โˆ’4,โˆ’3C6=โˆ’12,โˆ’2

Seventh point:

C7=โˆ’8,1+5,0C7=โˆ’3,1

Eighth point:

C8=โˆ’8,1+โˆ’5,0C8=โˆ’13,1

Nineth point:

C9=โˆ’8,1+4,3C9=โˆ’4,4

Tenth point:

C10=โˆ’8,1+4,โˆ’3C10=โˆ’4,โˆ’2

Eleventh point:

C11=โˆ’8,1+3,4C11=โˆ’5,5

Twelfths point.

C12=โˆ’8,1+3,โˆ’4C12=โˆ’5,โˆ’3

So, the twelve points from the point (-8, 1) are:

04

a.Step-1 โ€“ Given

Given that the coordinates are 5 units from (-8, 1).

05

Step-2 โ€“ To determine

We have to write an equation of the circle containing these points.

06

Step-3 โ€“ Calculation

Here, center = (h, k) = (-8, 1) and the radius = r = 5.

Plug the values in the standard form of a circle:

xโˆ’h2+yโˆ’k2=r2

(x+8)2+yโˆ’12=52(x+8)2+yโˆ’12=25

So, the equation is(x+8)2+yโˆ’12=25

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free