Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Die Nullstellen \(c_{1}, c_{2}\) und \(e_{3}\) des Polynoms \(4 X^{3}-g_{2} X-g_{3}\) sind genau dann reell, wenn \(g_{2}\) und \(g_{3}\) reell sind und die Diskriminante \(\Delta=g_{2}^{3}-27 g_{3}^{2}\) nicht negativ ist.

Short Answer

Expert verified
The roots are real if \(g_2\) and \(g_3\) are real, and \(\Delta = g_2^3 - 27g_3^2 \geq 0\).

Step by step solution

01

Understanding the Problem

We are given a polynomial equation of the form \(4x^3 - g_2x - g_3\). We need to determine the conditions under which all roots \(c_1, c_2,\) and \(c_3\) are real numbers. This involves analyzing the coefficients \(g_2\) and \(g_3\) as well as the discriminant \(\Delta\).
02

Identifying Conditions for Real Roots

For the roots of a cubic polynomial \(a x^3 + b x^2 + c x + d\) to be real, all coefficients must be real, and the discriminant must be non-negative. Here, our polynomial has \(a = 4\), \(b = 0\), \(c = -g_2\), and \(d = -g_3\). Thus, \(g_2\) and \(g_3\) need to be real.
03

Using the Discriminant

The discriminant \(\Delta\) of the polynomial \(4x^3 - g_2x - g_3\) helps determine the nature of its roots. It is given by \(\Delta = g_2^3 - 27g_3^2\). For the roots to be real, \(\Delta\) must be non-negative (i.e., \(\Delta \geq 0\)).
04

Conclusion

All roots \(c_1, c_2,\) and \(c_3\) of the polynomial \(4x^3 - g_2x - g_3\) are real if \(g_2\) and \(g_3\) are real numbers and the discriminant \(\Delta = g_2^3 - 27g_3^2\) is non-negative.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Discriminant
In the context of cubic polynomials, the discriminant is a crucial component that helps us understand the nature of a polynomial's roots. For a cubic polynomial like \(4x^3 - g_2x - g_3\), the discriminant is expressed as \(\Delta = g_2^3 - 27g_3^2\). This equation plays a key role in determining whether the roots of the polynomial are real or complex.

Essential Points about the Discriminant:
  • The discriminant \(\Delta\) is a single value calculated from the coefficients of the polynomial.
  • If \(\Delta \geq 0\), the cubic polynomial has either three real roots or one real root and two complex conjugate roots.
  • If \(\Delta < 0\), the polynomial has one real root and two non-real complex conjugate roots.
Understanding the discriminant thus provides a way to quickly assess the nature of all the roots without solving the polynomial explicitly.
Real Roots
Real roots are simply the points at which the polynomial intersects the x-axis in a graph. For the cubic polynomial \(4x^3 - g_2x - g_3\), having real roots means that these intersections occur for real values of \(x\).

Conditions for Real Roots:
  • All coefficients of the polynomial must be real numbers.
  • The discriminant \(\Delta = g_2^3 - 27g_3^2\) must be non-negative (i.e., \(\Delta \geq 0\)).
This set of conditions guarantees that the polynomial will not have any imaginary components in its roots. When these conditions are satisfied, you can have either:
  • Three distinct real roots (if \(\Delta > 0\)).
  • A triple real root or a combination of a real root and a repeated real root (when \(\Delta = 0\)).
Thus, real roots are important in determining the behavior of the polynomial and its graph in real-number space.
Polynomial Coefficients
Polynomial coefficients are the numbers that precede each term in a polynomial equation. In the cubic polynomial \(4x^3 - g_2x - g_3\), the coefficients are 4, \(-g_2\), and \(-g_3\).

Impact of Polynomial Coefficients:
  • They influence the shape and position of the polynomial's graph.
  • They determine the polynomial's discriminant, \(\Delta = g_2^3 - 27g_3^2\), which further informs us of the nature of the roots.
  • In this context, the coefficients \(g_2\) and \(g_3\) need to be real for the roots to be real.
The coefficients define the major characteristics of the polynomial's behavior and are essential in solving for its roots. When dealing with questions of real roots, ensuring that the coefficients are real numbers is the first critical step.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Sei \(f: \mathrm{C} \rightarrow \mathbb{C}\) eine nichtkonstante meromorphe Funktion. Die Menge der Perioden $$ L_{f}:=\\{\omega \in \mathrm{C} ; \quad f(z+\omega)=f(z) \text { far alle } z \in \mathrm{C}\\} $$ ist eine diskrete Untergruppe von \(\mathrm{C}\).

Seien \(f\) und \(g\) elliptische Funktionen zum selben Gitter. a) Wenn \(f\) und \(g\) dieselben Pole und dieselben Hauptteile in den Polen haben, so unterscheiden sie sich nur um eine additive Konstante. b) Haben \(f\) und \(g\) dieselben Pol- und Nullstellen jeweils mit denselben Vielfachheiten, so unterscheiden sie sich um eine multiplikative Konstante.

Far eine ungerade elliptische Funktion zu einem Gitter \(L\) sind die Halbgitterpunkte \(\omega / 2, \omega \in L\), Null- oder Polstellen.

Man beweise den Struktursatz fir diskrete Untergruppen \(L \subset \mathrm{C}\). Anleitung. Ist \(L \neq\\{0\\}\), so existiert ein \(\omega_{1} \neq 0\) in \(L\) von minimalem Betrag. Es gilt dann $$ L \cap R \omega_{1}=Z \omega_{1}= $$ Wenn \(L\) in der von \(\omega_{1}\) aufgespannten Geraden enthalten ist, sind wir also fertig. Andernfalls existiert ein \(\omega_{2}\) aus \(L\), welches nicht in \(R \omega_{1}\) enthalten ist. Man wahle ein \(\omega_{2}\) mit minimalem Betrag und aeige \(L=\mathrm{Z} \omega_{1}+\mathrm{Zw}_{2}\). Aus dem Struktursatz folgt: Ist \(L \subset C\) eine diskrete Untergruppe, welrhe ein Gitter umabt, so ist \(L\) selbst ein Gitter. Inshesondere ist jede Gruppe \(L^{\prime}\), welche zwischen zwei Gittern \(L\) und \(L^{n}\) liegt, \(L \subset L^{\prime} \subset L^{\prime \prime}\), ein Gitter,

Ein Gitter heidt Rechteckgitter, falls eine Gitterbasis \(\omega_{1}, \omega_{2}\) so gewdhlt werden kann, dass \(\omega_{1}\) reell und \(\omega_{2}\) rein imaginlir ist. Ein Gitter \(L\) heibt rhombicch, falls die Gitterbasis so gew?hlt werden kann, dass \(\omega_{2}=\bar{\omega}_{1}\) gilt. Man zeige, dass ein Gitter genau dann reell ist, wenn es ein Rechteckgitter oder rhombisch ist.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free