Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Man beweise den Struktursatz fir diskrete Untergruppen \(L \subset \mathrm{C}\). Anleitung. Ist \(L \neq\\{0\\}\), so existiert ein \(\omega_{1} \neq 0\) in \(L\) von minimalem Betrag. Es gilt dann $$ L \cap R \omega_{1}=Z \omega_{1}= $$ Wenn \(L\) in der von \(\omega_{1}\) aufgespannten Geraden enthalten ist, sind wir also fertig. Andernfalls existiert ein \(\omega_{2}\) aus \(L\), welches nicht in \(R \omega_{1}\) enthalten ist. Man wahle ein \(\omega_{2}\) mit minimalem Betrag und aeige \(L=\mathrm{Z} \omega_{1}+\mathrm{Zw}_{2}\). Aus dem Struktursatz folgt: Ist \(L \subset C\) eine diskrete Untergruppe, welrhe ein Gitter umabt, so ist \(L\) selbst ein Gitter. Inshesondere ist jede Gruppe \(L^{\prime}\), welche zwischen zwei Gittern \(L\) und \(L^{n}\) liegt, \(L \subset L^{\prime} \subset L^{\prime \prime}\), ein Gitter,

Short Answer

Expert verified
The subgroup \( L \) is a lattice generated by \( \omega_1 \) and \( \omega_2 \).

Step by step solution

01

Identify Minimal Element

First, identify the minimal element in the subgroup \( L \) that is not the zero element. Let's denote this element by \( \omega_1 \). Because \( L \) is discrete, such a non-zero element \( \omega_1 \) exists with the minimal magnitude.
02

Subgroup Intersect Real Line

Consider the set \( L \cap \mathbb{R} \omega_1 \). This intersection implies that any element here must be an integer multiple of \( \omega_1 \), thus reducing to \( \mathbb{Z} \omega_1 \). This shows that the real part of elements along the line spanned by \( \omega_1 \) in \( L \) are integer multiples of \( \omega_1 \).
03

Check for Additional Elements

If \( L \) only contains elements in the line spanned by \( \omega_1 \), it means \( L = \mathbb{Z} \omega_1 \) and we are done. Otherwise, there exists another element \( \omega_2 \) in \( L \) that is not contained in \( \mathbb{R} \omega_1 \).
04

Choose Second Minimal Element

Choose \( \omega_2 \) from \( L \) with the smallest magnitude that is not in \( \mathbb{R} \omega_1 \). This \( \omega_2 \) should also contribute independent structure to \( L \).
05

Construct Discrete Lattice

Prove that \( L \) can now be expressed as \( L = \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \). This shows that \( L \) can be described as a lattice generated by \( \omega_1 \) and \( \omega_2 \), both having minimal minimal real span.
06

Conclusion from Structure Theorem

Apply the structure theorem: since \( L \subset \mathbb{C} \) is a discrete subgroup and consists of a lattice, any group \( L' \), where \( L \subset L' \subset L'' \) and \( L'' \) is another lattice, is also a lattice. Therefore, \( L' \) itself is a lattice.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Struktursatz
The Struktursatz, or Structure Theorem, plays an essential role when dealing with discrete subgroups, especially in the field of complex numbers. This theorem helps us understand how these groups can be formed and their inherent properties. When we have a subgroup, denoted as \( L \) in the complex numbers \( \mathbb{C} \), that is discrete, the theorem affirms that the structure of this subgroup can be likened to that of a lattice. It categorizes elements into linear combinations, primarily of two independent elements. For the structure theorem:
  • A discrete subgroup can be generated by a set of elements, usually minimal, that span the space.
  • This implies the subgroup forms a lattice; hence, it has a recurring grid-like structure in the complex plane.
By using the Strukturten theorem, mathematicians can conclude that any group's behavior nestled between two lattices can also be considered a lattice.
Gitter
In mathematics, a Gitter, or lattice, refers to a regularly spaced grid of points which can be described mathematically by integer linear combinations of two independent vectors. Within the context of complex numbers, it has a profound implication for how structures can be represented. Consider a lattice in the complex plane:
  • A lattice in \( \mathbb{C} \) can be visualized as repeated geometrical shapes filling the plane without gaps or overlaps.
  • The points in the lattice can be expressed as \( \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \), where \( \omega_1 \) and \( \omega_2 \) are basis elements.
Understanding lattices helps us visualize and work with complex numbers, recognizing repeating patterns and structure, which is essential in fields like crystallography and number theory.
diskrete Gruppe
A diskrete Gruppe, or discrete group, is significant in the study of group theory because it involves groups where elements are isolated points in the space. This concept underpins many areas of mathematics by simplifying groups into more manageable parts. These groups satisfy some key properties:
  • Elements are separated by a minimum distance ensuring no two elements are arbitrarily close.
  • There is a smallest element, the minimal magnitude, that serves as a starting point for defining the group's structure.
Discrete groups are critical because they allow for a structured analysis of how complex elements operate under group laws. They facilitate the unraveling of complicated algebraic structures into more understandable fragments.
komplexe Zahlen
Komplexe Zahlen, or complex numbers, extend the real numbers by incorporating the imaginary unit \( i \), which satisfies \( i^2 = -1 \). This allows every complex number to be expressed in the form \( a + bi \), where \( a \) and \( b \) are real numbers. Here are key highlights about their function in mathematics:
  • They enable the representation of quantities with both magnitude and direction, important in fields like engineering and physics.
  • Complex numbers support the formation of discrete groups and lattices, providing a rich structure due to their two-dimensional nature.
The geometric representation of complex numbers fosters a deeper understanding of mathematical equations and systems, advancing beyond dimensions possible with just real numbers.
Minimalbetrag
The concept of Minimalbetrag, or minimal magnitude, is central when studying discrete subgroups in complex analysis. It involves identifying the smallest non-zero element within a group which sets a baseline for calculations and further exploration. Its significance can be seen as follows:
  • The smallest element is crucial for defining the bounds and scope of a group or a lattice.
  • This minimal element serves to determine the span and independence of a subgroup's generators.
By pinpointing the minimal magnitude element, mathematicians can systematically organize other elements within the subgroup, allowing for a logically consistent examination of group and lattice structures.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Seien \(f\) und \(g\) elliptische Funktionen zum selben Gitter. a) Wenn \(f\) und \(g\) dieselben Pole und dieselben Hauptteile in den Polen haben, so unterscheiden sie sich nur um eine additive Konstante. b) Haben \(f\) und \(g\) dieselben Pol- und Nullstellen jeweils mit denselben Vielfachheiten, so unterscheiden sie sich um eine multiplikative Konstante.

Ein Gitter heidt Rechteckgitter, falls eine Gitterbasis \(\omega_{1}, \omega_{2}\) so gewdhlt werden kann, dass \(\omega_{1}\) reell und \(\omega_{2}\) rein imaginlir ist. Ein Gitter \(L\) heibt rhombicch, falls die Gitterbasis so gew?hlt werden kann, dass \(\omega_{2}=\bar{\omega}_{1}\) gilt. Man zeige, dass ein Gitter genau dann reell ist, wenn es ein Rechteckgitter oder rhombisch ist.

Sei \(L \in C\) ein Gitter mit der Bigenschaft \(g_{2}(L)=8\) und \(g_{s}(L)=0\). Der Punkt (2,4) liegt auf der affinen Kurve \(y^{2}=4 x^{3}-8 x .\) Sein Doppelted der in der elliptischen Kurve eingefuhrten Addition ist der Punkt \(\left(\frac{9}{4},-\frac{21}{4}\right)\), Anleitwng. Man bringe die Tangente an \((2,4)\) mit der Kurve zum Schnitt.

Sei \(f: \mathrm{C} \rightarrow \mathbb{C}\) eine nichtkonstante meromorphe Funktion. Die Menge der Perioden $$ L_{f}:=\\{\omega \in \mathrm{C} ; \quad f(z+\omega)=f(z) \text { far alle } z \in \mathrm{C}\\} $$ ist eine diskrete Untergruppe von \(\mathrm{C}\).

Die Nullstellen \(c_{1}, c_{2}\) und \(e_{3}\) des Polynoms \(4 X^{3}-g_{2} X-g_{3}\) sind genau dann reell, wenn \(g_{2}\) und \(g_{3}\) reell sind und die Diskriminante \(\Delta=g_{2}^{3}-27 g_{3}^{2}\) nicht negativ ist.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free