Chapter 5: Problem 3
Man beweise den Struktursatz fir diskrete Untergruppen \(L \subset \mathrm{C}\). Anleitung. Ist \(L \neq\\{0\\}\), so existiert ein \(\omega_{1} \neq 0\) in \(L\) von minimalem Betrag. Es gilt dann $$ L \cap R \omega_{1}=Z \omega_{1}= $$ Wenn \(L\) in der von \(\omega_{1}\) aufgespannten Geraden enthalten ist, sind wir also fertig. Andernfalls existiert ein \(\omega_{2}\) aus \(L\), welches nicht in \(R \omega_{1}\) enthalten ist. Man wahle ein \(\omega_{2}\) mit minimalem Betrag und aeige \(L=\mathrm{Z} \omega_{1}+\mathrm{Zw}_{2}\). Aus dem Struktursatz folgt: Ist \(L \subset C\) eine diskrete Untergruppe, welrhe ein Gitter umabt, so ist \(L\) selbst ein Gitter. Inshesondere ist jede Gruppe \(L^{\prime}\), welche zwischen zwei Gittern \(L\) und \(L^{n}\) liegt, \(L \subset L^{\prime} \subset L^{\prime \prime}\), ein Gitter,
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.