Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Far eine ungerade elliptische Funktion zu einem Gitter \(L\) sind die Halbgitterpunkte \(\omega / 2, \omega \in L\), Null- oder Polstellen.

Short Answer

Expert verified
Half-lattice points \( \omega/2 \) are zero or pole due to symmetry in odd elliptic functions.

Step by step solution

01

Understanding the Problem

We need to determine why the half-lattice points \( \omega/2 \) for an odd elliptic function with respect to a lattice \( L \) can be zeroes or poles.
02

Recall the Properties of Elliptic Functions

An elliptic function is doubly periodic, i.e., there exist two complex numbers (lattice points) \( \omega_1, \omega_2 \) such that the function repeats values in those directions. Odd functions, in particular, satisfy \( f(-z) = -f(z) \).
03

Examine Symmetry of the Function

For a function to be odd at a particular point, it must hold that \( f(-z) = -f(z) \). For an odd function at half-lattice points, \( \omega/2 \), this symmetry can imply that if \( f(\omega/2) eq 0 \), then \( f(\omega/2) \) and \( f(-\omega/2) \) must have opposing signs or magnitudes. Thus it's logical for them to be zero or infinite (poles).
04

Investigate Values at Half-Lattice Points

Consider the point at \( z = \omega/2 \). If \( f(z) \) is odd, then \( f(\omega/2) = -f(-\omega/2) \). Consequently, for odd elliptic functions at these specific points, it must be true that \( f(\omega/2) = 0 \) or \( f(\omega/2) \) is undefined (i.e., a pole).
05

Conclude the Analysis

Having established the properties of symmetry and periodicity for odd elliptic functions with the original lattice \( L \), we conclude that half-lattice points \( \omega/2 \) will indeed be either zeroes or poles owing to their symmetry characteristics.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Lattice Theory
In mathematics, lattices are grids that extend infinitely in multiple dimensions. They are defined by two complex numbers, known as lattice points, which form the primitive fundamental region. When discussing elliptic functions, these lattices underlie the periodic nature of the functions. The key here is to understand that these lattice points generate a grid over the complex plane.
Elliptic functions are associated with these complex lattices because they repeat their values in a structured way, much like these grids repeat in space. When we say a lattice is associated with an elliptic function, we mean that every point on the grid serves as a symmetry point for the function. In the context of elliptic functions, specific points on the lattice, like the half-lattice points, have special significance because they often represent points where the function's properties change (e.g., where poles or zeros occur).
  • The lattice provides a structured, repeating background for the function to exist over the complex plane.
  • Half-lattice points like \( \omega/2 \) are of particular interest, especially for odd functions.
Understanding this concept is crucial for studying periodic functions and exploring deeper properties of elliptic functions.
Complex Analysis
Complex analysis is the study of functions that operate within the complex number system. This field explores not just the functions themselves but also their continuity, differentiability, and integration. Elliptic functions, a central topic in complex analysis, are defined on the complex plane and demonstrate interesting periodic properties.
A function is considered complex when it has a complex variable, and it’s analytic if it has derivatives at all points in its domain. Elliptic functions are unique because they are doubly periodic, meaning they repeat their values at intervals corresponding to the lattice points.
  • Complex analysis provides tools and theorems to understand the behavior of these functions at various points.
  • The theory helps define the symmetry properties that such functions exhibit.
By examining elliptic functions through the lens of complex analysis, we can appreciate their behavior at half-lattice points, understanding why these points are zeros or poles.
Periodicity
Periodicity is a fundamental characteristic of elliptic functions, describing how these functions repeat their values at regular intervals. In the realm of complex analysis, a function is said to be periodic if exists a non-zero complex number such that the function repeats its values over intervals of this number. For elliptic functions, this feature is extended to include two periods, \( \omega_1 \) and \( \omega_2 \), leading to a doubly periodic nature.
This characteristic is closely tied to the lattice associated with the function. Just like how a lattice is a repeating pattern, periodicity in elliptic functions means the function maintains the same value pattern over these lattice points.
  • Half-lattice points are critical in understanding how these periodic functions behave differently at certain regular intervals.
  • For odd elliptic functions, these periodic properties imply special characteristics such as zeros or poles at these points.
Insights on periodicity help us decipher why the values of odd elliptic functions are zero or polar at half-lattice points, underscoring their intricate, yet consistent patterns.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Sei \(L \in C\) ein Gitter mit der Bigenschaft \(g_{2}(L)=8\) und \(g_{s}(L)=0\). Der Punkt (2,4) liegt auf der affinen Kurve \(y^{2}=4 x^{3}-8 x .\) Sein Doppelted der in der elliptischen Kurve eingefuhrten Addition ist der Punkt \(\left(\frac{9}{4},-\frac{21}{4}\right)\), Anleitwng. Man bringe die Tangente an \((2,4)\) mit der Kurve zum Schnitt.

Die Nullstellen \(c_{1}, c_{2}\) und \(e_{3}\) des Polynoms \(4 X^{3}-g_{2} X-g_{3}\) sind genau dann reell, wenn \(g_{2}\) und \(g_{3}\) reell sind und die Diskriminante \(\Delta=g_{2}^{3}-27 g_{3}^{2}\) nicht negativ ist.

Seien \(f\) und \(g\) elliptische Funktionen zum selben Gitter. a) Wenn \(f\) und \(g\) dieselben Pole und dieselben Hauptteile in den Polen haben, so unterscheiden sie sich nur um eine additive Konstante. b) Haben \(f\) und \(g\) dieselben Pol- und Nullstellen jeweils mit denselben Vielfachheiten, so unterscheiden sie sich um eine multiplikative Konstante.

Man beweise den Struktursatz fir diskrete Untergruppen \(L \subset \mathrm{C}\). Anleitung. Ist \(L \neq\\{0\\}\), so existiert ein \(\omega_{1} \neq 0\) in \(L\) von minimalem Betrag. Es gilt dann $$ L \cap R \omega_{1}=Z \omega_{1}= $$ Wenn \(L\) in der von \(\omega_{1}\) aufgespannten Geraden enthalten ist, sind wir also fertig. Andernfalls existiert ein \(\omega_{2}\) aus \(L\), welches nicht in \(R \omega_{1}\) enthalten ist. Man wahle ein \(\omega_{2}\) mit minimalem Betrag und aeige \(L=\mathrm{Z} \omega_{1}+\mathrm{Zw}_{2}\). Aus dem Struktursatz folgt: Ist \(L \subset C\) eine diskrete Untergruppe, welrhe ein Gitter umabt, so ist \(L\) selbst ein Gitter. Inshesondere ist jede Gruppe \(L^{\prime}\), welche zwischen zwei Gittern \(L\) und \(L^{n}\) liegt, \(L \subset L^{\prime} \subset L^{\prime \prime}\), ein Gitter,

Ein Gitter heidt Rechteckgitter, falls eine Gitterbasis \(\omega_{1}, \omega_{2}\) so gewdhlt werden kann, dass \(\omega_{1}\) reell und \(\omega_{2}\) rein imaginlir ist. Ein Gitter \(L\) heibt rhombicch, falls die Gitterbasis so gew?hlt werden kann, dass \(\omega_{2}=\bar{\omega}_{1}\) gilt. Man zeige, dass ein Gitter genau dann reell ist, wenn es ein Rechteckgitter oder rhombisch ist.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free