Chapter 3: Problem 19
Find the determinant of the given matrix using cofactor expansion along the first row. 13\. \(\left[\begin{array}{ccc}3 & 2 & 3 \\ -6 & 1 & -10 \\ -8 & -9 & -9\end{array}\right]\) 14\. \(\left[\begin{array}{ccc}8 & -9 & -2 \\ -9 & 9 & -7 \\ 5 & -1 & 9\end{array}\right]\) 15\. \(\left[\begin{array}{ccc}-4 & 3 & -4 \\ -4 & -5 & 3 \\ 3 & -4 & 5\end{array}\right]\) 16\. \(\left[\begin{array}{ccc}1 & -2 & 1 \\ 5 & 5 & 4 \\ 4 & 0 & 0\end{array}\right]\) 17\. \(\left[\begin{array}{ccc}1 & -4 & 1 \\ 0 & 3 & 0 \\ 1 & 2 & 2\end{array}\right]\) 18\. \(\left[\begin{array}{ccc}3 & -1 & 0 \\ -3 & 0 & -4 \\ 0 & -1 & -4\end{array}\right]\) 19\. \(\left[\begin{array}{ccc}-5 & 0 & -4 \\ 2 & 4 & -1 \\ -5 & 0 & -4\end{array}\right]\) 20\. \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.