Chapter 2: Problem 8
A matrix \(A\) and vectors \(\vec{b}, \bar{u}\) and \(\vec{v}\) are given. Verify that \(A \vec{u}=\overrightarrow{0}, A \vec{v}=\vec{b}\) and \(A(\vec{u}+\vec{v})=\vec{b}\).$$ A=\left[\begin{array}{ccc} 1 & -1 & 3 \\ 3 & -3 & -3 \\ -1 & 1 & 1 \end{array}\right] $$ $$ \vec{b}=\left[\begin{array}{c} -1 \\ -3 \\ 1 \end{array}\right], \vec{u}=\left[\begin{array}{l} 2 \\ 2 \\ 0 \end{array}\right], \vec{v}=\left[\begin{array}{l} 2 \\ 3 \\ 0 \end{array}\right] $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.