Chapter 2: Problem 7
A matrix \(A\) and vectors \(\vec{b}, \bar{u}\) and \(\vec{v}\) are given. Verify that \(A \vec{u}=\overrightarrow{0}, A \vec{v}=\vec{b}\) and \(A(\vec{u}+\vec{v})=\vec{b}\).$$ \begin{array}{l} A=\left[\begin{array}{ccc} 2 & -2 & -1 \\ -1 & 1 & -1 \\ -2 & 2 & -1 \end{array}\right] \\ \vec{b}=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right], \vec{u}=\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right], \vec{v}=\left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array}\right] \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.