Consider repeated observation on a \(m\) -dimensional random variable with mean
\(E\left(X_{i}\right)=\mu, i=1,2, \ldots, m, \quad
\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1,2, \ldots, m\) and
\(\operatorname{Cov}\left(X_{i}, X_{j}\right)=\rho \sigma^{2}, i \neq j .\) Let
the \(i\) th observation be \(\left(x_{1 i}, \ldots, x_{m i}\right)\)
\(i=1,2, \ldots, n\). Define
$$
\begin{array}{c}
\bar{X}_{i}=\frac{1}{m} \sum_{j=1}^{m} X_{j i} \\
W_{i}=\sum_{j=1}^{m}\left(X_{j i}-\bar{X}_{i}\right)^{2}, \\
B=m \sum_{i=1}^{n}\left(\bar{X}_{i}-\bar{X}\right)^{2}, \\
W=W_{1}+\cdots+W_{n} .
\end{array}
$$
where \(B\) is sum of squares between and \(W\) is sum of squares within samples.
1\. Prove (i) \(\left.W \sim(1-\rho) \sigma^{2} \chi^{(} m n-n\right)\) and
(ii) \(B \sim(1+(m-1) \rho) \sigma^{2} \chi^{2}(n-1)\).
2\. Suppose \(\frac{(1-\rho) B}{(1+(m-1) \rho) W} \sim F_{(n-1),(m n-n)} .\)
Prove that when \(\rho=0, \frac{W}{W+B}\) follows beta distribution with
parameters \(\frac{m n-n}{2}\) and \(\frac{n-1}{2}\).