Chapter 6: Q9RP (page 344)
Find a general solution to the Cauchy-Euler equation
\(\begin{array}{l}{x^3}{y^{\prime \prime \prime }} - 2{x^2}{y^{\prime \prime }} - 5x{y^\prime } + 5y = {x^{ - 2}},\\x > 0,\end{array}\)
given that \(\left\{ {x,{x^5},{x^{ - 1}}} \right\}\) is a fundamental solution set to the corresponding homogeneous equation.
Short Answer
The general solution for the given equation:
\(y(x) = {c_1}x + {c_2}{x^5} + {c_3}{x^{ - 1}} - \frac{1}{{21}}{x^{ - 2}}\)