Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a general solution to the Cauchy-Euler equation

\(\begin{array}{l}{x^3}{y^{\prime \prime \prime }} - 2{x^2}{y^{\prime \prime }} - 5x{y^\prime } + 5y = {x^{ - 2}},\\x > 0,\end{array}\)

given that \(\left\{ {x,{x^5},{x^{ - 1}}} \right\}\) is a fundamental solution set to the corresponding homogeneous equation.

Short Answer

Expert verified

The general solution for the given equation:

\(y(x) = {c_1}x + {c_2}{x^5} + {c_3}{x^{ - 1}} - \frac{1}{{21}}{x^{ - 2}}\)

Step by step solution

01

Determining the solution set to the corresponding homogeneous equation.

The first step is to divide the given equation by \({x^3}\) to obtain the standard form.

\({y^{\prime \prime \prime }} - \frac{2}{x}{y^{\prime \prime }} - \frac{5}{{{x^2}}}{y^\prime } + - \frac{5}{{{x^3}}}y = {x^{ - 5}}\)

Now we see that\(g(x) = {x^{ - 5}}\). Since \(\left\{ {x,{x^5},{x^{ - 1}}} \right\}\) is a fundamental solution set the solution to the corresponding homogeneous equation is:

\({y_h}(x) = {c_1}x + {c_2}{x^5} + {c_3}{x^{ - 1}}\)

And we can obtain a particular solution of the form.

\({y_p}(x) = {V_1}(x)x + {V_2}(x){x^5} + {V_3}(x){x^{ - 1}}.\)

02

Determining the function \({V_1},{V_2}\) and\({V_3}\)

Let’s determine the functions \({V_1},{V_2}\)and\({V_3}\). First, we must evaluate the four determinants:

\(\begin{array}{c}W\left[ {x,{x^5},{x^{ - 1}}} \right](x) = \left| {\begin{array}{*{20}{c}}x&{{x^5}}&{{x^{ - 1}}}\\1&{5{x^4}}&{ - {x^{ - 1}}}\\0&{20{x^3}}&{2{x^{ - 3}}}\end{array}} \right| = x\left| {\begin{array}{*{20}{c}}{5{x^4}}&{ - {x^{ - 2}}}\\{20{x^3}}&{2{x^{ - 3}}}\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}{{x^5}}&{{x^{ - 1}}}\\{20{x^3}}&{2{x^{ - 3}}}\end{array}} \right|\\ = x(10x + 20x) - 1\left( {2{x^2} - 20{x^2}} \right)\\ = 30{x^2} + 18{x^2}\\ = 48{x^2}\end{array}\)

\(\begin{array}{c}{W_1} = {( - 1)^{3 - 1}}\left| {\begin{array}{*{20}{c}}{{x^5}}&{{x^{ - 1}}}\\{5{x^4}}&{ - {x^{ - 2}}}\end{array}} \right| = - {x^3} - 5{x^3} = - 6{x^3}\\{W_2} = {( - 1)^{3 - 2}}\left| {\begin{array}{*{20}{c}}x&{{x^{ - 1}}}\\1&{ - {x^{ - 2}}}\end{array}} \right| = - \left( { - {x^{ - 1}} - {x^{ - 1}}} \right) = 2{x^{ - 1}}\\{W_3} = {( - 1)^{3 - 3}}\left| {\begin{array}{*{20}{c}}x&{{x^5}}\\1&{5{x^4}}\end{array}} \right| = 5{x^5} - {x^5} = 4{x^5}\end{array}\)

Now we can calculate the undetermined functions \({V_1},{V_2}\)and\({V_3}\).

\(\begin{array}{c}{V_1}(x) = \int {\frac{{g(x) \cdot {W_1}}}{{W(x)}}} dx = \int {\frac{{{x^{ - 5}} \cdot \left( { - 6{x^3}} \right)}}{{48{x^2}}}} dx = - \frac{1}{8}\int {{x^{ - 4}}} dx = \frac{1}{{24}}{x^{ - 3}}\\{V_2}(x) = \int {\frac{{g(x) \cdot {W_2}}}{{W(x)}}} dx = \int {\frac{{{x^{ - 5}} \cdot 2{x^{ - 1}}}}{{48{x^2}}}} dx = \frac{1}{{24}}\int {{x^{ - 8}}} dx = - \frac{1}{{168}}{x^{ - 7}}\\{V_3}(x) = \int {\frac{{g(x) \cdot {W_3}}}{{W(x)}}} dx = \int {\frac{{{x^{ - 5}} \cdot 4{x^5}}}{{48{x^2}}}} dx = \frac{1}{{12}}\int {{x^{ - 2}}} dx = - \frac{1}{{12}}{x^{ - 1}}\end{array}\)

03

Determining the general solution for the given equation.

Substituting this into \({y_p}(x) = {V_1}(x)x + {V_2}(x){x^5} + {V_3}(x){x^{ - 1}}\) gives:

\(\begin{array}{c}{y_p}(x) = \frac{1}{{24}}{x^{ - 3}} \cdot x - \frac{1}{{168}}{x^{ - 7}} \cdot {x^5} - \frac{1}{{12}}{x^{ - 1}} \cdot {x^{ - 1}}\\ = \frac{1}{{24}}{x^{ - 2}} - \frac{1}{{168}}{x^{ - 2}} - \frac{1}{{12}}{x^{ - 2}} = - \frac{1}{{21}}{x^{ - 2}}\end{array}\)

Finally, a general solution to the given equation is:

\(\begin{array}{c}y(x) = {y_h}(x) + {y_p}(x)\\y(x) = {c_1}x + {c_2}{x^5} + {c_3}{x^{ - 1}} - \frac{1}{{21}}{x^{ - 2}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free