Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a general solution for the differential equation with x as the independent variable:

u'''9u''+27u'27u=0

Short Answer

Expert verified

The general solution for the differential equation with x as the independent variable is u(x)=c1e3x+c2xe3x+c3x2e3x

Step by step solution

01

Auxiliary equation:

In the equation,r39r3+27r27=0 , we recognize a complete cube, namely,(r3)3=0 . Thus, it has just one root x = 3 of multiplicity three.

02

General solution:

The general solution to the given differential equation is given by

u(x)=c1e3x+c2xe3x+c3x2e3x

Hence the final solution is u(x)=c1e3x+c2xe3x+c3x2e3x

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free