Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given that \({y_p} = \sin \left( {{x^2}} \right)\) is a particular solution to \({y^{(4)}} + y = \left( {16{x^4} - 11} \right)\sin \left( {{x^2}} \right) - 48{x^2}\cos \left( {{x^2}} \right)\)on\((0,\infty )\), find a general solution.

Short Answer

Expert verified

The general solution is:

\(\begin{array}{c}y(x) = {y_h}(x) + {y_p}(x)y(x) = {c_1}{e^{ - \frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x + {c_2}{e^{ - \frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x\\ + {c_3}{e^{\frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x + {c_4}{e^{\frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x + \sin \left( {{x^2}} \right)\end{array}\)

Step by step solution

01

Determine the general solution to the given homogeneous equation.

Consider the given differential equation;

\({y^{(4)}} + y = \left( {16{x^2} - 11} \right){\sin ^2}\left( {{x^2}} \right) - 48{x^2}\cos \left( {{x^2}} \right)\)

A particular solution to the given equation on \((0,\infty )\) is;

\({y_p}(x) = \sin \left( {{x^2}} \right).\)

Now let’s solve the corresponding homogeneous equation;

\({y^{(4)}} + y = 0\)

The auxiliary equation is:

\(\begin{array}{*{20}{r}}{{r^4} + 1 = 0}\\{{r^4} + 2{r^2} + 1 - 2{r^2} = 0}\\{{{\left( {{r^2} + 1} \right)}^2} - {{(\sqrt 2 r)}^2} = 0}\\{\left( {{r^2} + 1 + \sqrt 2 r} \right)\left( {{r^2} + 1 - \sqrt 2 r} \right) = 0}\\{\left( {{r^2} + \sqrt 2 r + 1} \right)\left( {{r^2} - \sqrt 2 r + 1} \right) = 0}\end{array}\)

Now we solve \({r^2} - \sqrt 2 r + 1 = 0\)

\(\begin{array}{c}r = \frac{{ - \sqrt 2 \pm \sqrt {2 - 4} }}{2}\\ = \frac{{ - \sqrt 2 \pm \sqrt 2 i}}{2}\\ = - \frac{{\sqrt 2 }}{2} \pm \frac{{\sqrt 2 }}{2}i\end{array}\)

Similarly solving \({r^2} + \sqrt 2 r + 1 = 0\) we get the complete set of solutions of the auxiliary equation.

\(\left\{ { - \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}i, - \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}i,\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}i,\frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}i} \right\}\)

Hence, a general solution to the corresponding homogeneous equation is:

\({y_h}(x) = {c_1}{e^{ - \frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x + {c_2}{e^{ - \frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x + {c_3}{e^{\frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x + {c_4}{e^{\frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x\)

02

Determine the general solution to the given non-homogeneous equation.

Finally, a general solution to the given non-homogeneous equation is:

\(\begin{array}{r}y(x) = {y_h}(x) + {y_p}(x)y(x) = {c_1}{e^{ - \frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x + {c_2}{e^{ - \frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x + {c_3}{e^{\frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x\\ + {c_4}{e^{\frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x + \sin \left( {{x^2}} \right)\end{array}\)

Thus, the general solution is:

\(y(x) = {y_h}(x) + {y_p}(x)y(x) = {c_1}{e^{ - \frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x + {c_2}{e^{ - \frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x + {c_3}{e^{\frac{{\sqrt 2 }}{2}x}}\cos \frac{{\sqrt 2 }}{2}x + {c_4}{e^{\frac{{\sqrt 2 }}{2}x}}\sin \frac{{\sqrt 2 }}{2}x + \sin \left( {{x^2}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free