Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 1-6, use the method of variation of parameters to determine a particular solution to the given equation.

z'''+3z''-4z=e2x

Short Answer

Expert verified

The particular solution isZp=116e2x

Step by step solution

01

Definition

Variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.

02

Find complementary solution

The given equation is:z'''+3z''-4z=e2x

The auxiliary equation ism3+3m2-4=0

Simplifying we get

m3+3m2-4=0(m-1)(m+2)2=0m=1,-2,-2

Therefore, the complimentary solution is given byZc=c1ex+c2e-2x+c3xe-2x

03

Calculate Wornkians

Compare with.CF=c1y1(x)+c2y2(x)+c3y3(x)

y1(x)=ex,y2(x)=e-2xandy3(x)=xe-2x

Wx=exe-2xxe-2xex0e2x0xe-2xex*e-2x*xe-2x*=exe-4x(-8x+8+8x-4)-e-2xe-x(4x-4+2x-1)+xe-2x4e-x+2e-x=4e-3x-6xe-3x+5e-3x+6xe-3x=9e-3x

04

Calculate Wornkians

W1=(-1)3-1We-2x,xe-2x=e-2xxe-2x-2e-2xe-2x1-2x=e-4xW2=(-1)3-2Wex,xe-2x=-exxe-2xexe-2x1-2x=-e-x(1-3x)

And the valuew3is,

W3=(-1)3-3Wex,e-2x=exe-2xex-2e-2x=-3e-x

05

Particular solution

The particular solution is given byyp(x)=y1(x)·v1(x)+y2(x)·v2(x)+y3(x)·v3(x)

Here,

V1=W1(x)f(x)W(x)dx=ex9V2=W2(x)f(x)W(x)dx=-e-x(1-3x)e2x9e-3xdx=-7e4x144+xe4x12

And

V3=W3(x)f(x)W(x)dx=-e4x12

Therefore, the particular integral is given by,

Zp=V1ex+V2e-2x+V3xe-2x=exex9+e4x144+xe4x12e-2x+-e4x12xe-2x=e2x16

Therefore the particular solution isZp=116e2x

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free