Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose the two springs in the coupled mass–spring system discussed in Problem 33 are switched, giving the new data \({\bf{m1}}{\rm{ }} = {\rm{ }}{\bf{m2}}{\rm{ }} = {\rm{ }}{\bf{1}},{\rm{ }}{\bf{k1}}{\rm{ }} = {\rm{ }}{\bf{2}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{k2}}{\rm{ }} = {\rm{ }}{\bf{3}}\) If both objects are now displaced 1 m to the right of their equilibrium positions and then released, determine the equations of motion of the two objects.

Short Answer

Expert verified

\(\begin{array}{*{20}{l}}{x(t) \approx {A_1}\cos (0.915x) + {A_3}\cos (2.676x)}\\{y(t) \approx (1.387){A_1}\cos (0.915x) - (0.72){A_3}\cos (2.676x)}\end{array}\)

Step by step solution

01

Take the coupled mass-spring system of differential equation

We know, coupled mass-spring system of differential equation is given by,

\(\begin{array}{l}{m_1}\frac{{{d^2}x}}{{d{t^2}}} + \left( {{k_1} + {k_2}} \right)x - {k_2}y = 0\\{m_2}\frac{{{d^2}y}}{{d{t^2}}} - {k_2}x + {k_2}y = 0\end{array}\)

Let \(D = \frac{d}{{dx}}\) then the given system of differential equation become

\(\begin{array}{l}{m_1}{D^2}x + \left( {{k_1} + {k_2}} \right)x - {k_2}y = 0\\{m_2}{D^2}y - {k_2}x + {k_2}y = 0\end{array}\)

Now putting the values \({m_1} = {m_2} = 1,{k_1} = 2,{k_2} = 3\) and we have

\(\begin{array}{*{20}{r}}{{D^2}x + (2 + 3)x - 3y = 0}\\{{D^2}y - 3x + 3y = 0}\end{array}\)

\( \Rightarrow {D^2}x + 5x - 3y = 0\) \((1)\)

\({D^2}y - 3x + 3y = 0\) \((2)\)

\( \Rightarrow \left( {{D^2} + 5} \right)x - 3y = 0\) \((3)\)

\(\left( {{D^2} + 3} \right)y - 3x = 0\) \((4)\)

02

From the left applying (D+3) in equation(3) and multiplying equation(4) by 3, we get

\(\left( {{D^2} + 3} \right)\left( {{D^2} + 5} \right)x - 3\left( {{D^2} + 3} \right)y = 0\) \((5)\)

\(3\left( {{D^2} + 3} \right)y - 9x = 0\) \((6)\)

Now adding equation(5) and equation(6) we get

\(\begin{array}{*{20}{r}}{\left( {{D^2} + 3} \right)\left( {{D^2} + 5} \right)x - 3\left( {{D^2} + 3} \right) + 3\left( {{D^2} + 3} \right) - 9x = 0}\\{\left( {{D^2} + 3} \right)\left( {{D^2} + 5} \right)x - 9x = 0}\\{\left( {\left( {{D^2} + 3} \right)\left( {{D^2} + 5} \right) - 9} \right)x = 0}\\{\left( {{D^4} + 5{D^2} + 3{D^2} + 15 - 9} \right)x = 0}\\{\left( {{D^4} + 8{D^2} + 6} \right)x = 0}\end{array}\)

i.e \({x^4}(t) + 8{x^2}(t) + 6x(t) = 0\)

03

Find and solve the auxiliary equation

the auxiliary equation of the above differential equation is

\({m^4} + 8{m^2} + 6 = 0\)

Putting \({m^2} = k\)

\(\begin{array}{l} \Rightarrow {k^2} + 8k + 6 = 0\\ \Rightarrow k = \frac{{ - 8 \pm 2\sqrt {10} }}{2}\\ \Rightarrow k \approx - 0.837,k \approx - 7.162\end{array}\)

Since

\(\begin{array}{*{20}{c}}k&{ = {m^2}}\\{ \Rightarrow {{(k)}^{\frac{1}{2}}}}&{ = m}\\{ \Rightarrow {m_1}}&{ = 0.9152i}\\{{m_2}}&{ = - 0.915i}\\{{m_3}}&{ = 2.676i}\\{{m_4}}&{ = - 2.676i}\end{array}\)

04

Find general solution \(x(t)\) is

Therefore general solution \(x(t)\)is

\(\)\(\begin{array}{*{20}{c}}{x(t) \approx }&{{C_1}{e^{{a_1}x}}\left( {\cos \left( {{b_1}x} \right) + i\sin \left( {{b_1}x} \right)} \right) + {C_2}{e^{{a_2}x}}\left( {\cos \left( {{b_2}x} \right) + i\sin \left( {{b_2}x} \right)} \right)}\\{}&{ + {C_3}{e^{{a_3}x}}\left( {\cos \left( {{b_3}x} \right) + i\sin \left( {{b_3}x} \right)} \right) + {C_4}{e^{{a_4}x}}\left( {\cos \left( {{b_4}x} \right) + i\sin \left( {{b_4}x} \right)} \right)}\end{array}\)

\(\begin{array}{*{20}{c}} \approx &{{C_1}{e^{0.x}}(\cos (0.915x) + i\sin (0.915x)) + {C_2}{e^{0.x}}(\cos ( - 0.915x) + i\sin ( - 0.915x))}\\{}&{ + {C_3}{e^{0.x}}(\cos (2.676x) + i\sin (2.676x)) + {C_4}{e^{0.x}}(\cos ( - 2.676x) + i\sin ( - 2.676x))}\end{array}\)

\(\begin{array}{*{20}{c}} \approx &{{C_1}(\cos (0.915x) + i\sin (0.915x)) + {C_2}(\cos (0.915x) - i\sin (0.915x)) + {C_3}(\cos (2.676x)}\\{}&{ + i\sin (2.676x)) + {C_4}(\cos (2.676x) - i\sin (2.676x))}\end{array}\)

\(\begin{array}{*{20}{c}} \approx &{\left( {{C_1} + {C_2}} \right)\cos (0.915x) + i\left( {{C_1} - {C_2}} \right)\sin (0.915x) + \left( {{C_3} + {C_4}} \right)\cos (2.676x)}\\{}&{ + i\left( {{C_3} - {C_4}} \right)\sin (2.676x)}\end{array}\) \((7)\)

Let

\(\begin{array}{*{20}{l}}{{A_1} = {C_1} + {C_2}}\\{{A_2} = i\left( {{C_1} - {C_2}} \right)}\\{{A_3} = {C_3} + {C_4}}\\{{A_4} = i\left( {{C_3} - {C_4}} \right)}\end{array}\)

Then by putting the values A1,A2,A3, and A4 in (7), we get

\(x(t) \approx {A_1}\cos (0.915x) + {A_2}\sin (0.915x) + {A_3}\cos (2.676x) + {A_4}\sin (2.676x)\)

This is the general solution for \(x(t)\)

05

Find general solution for \(y(t)\)

By substituting \(x(t)\)in (3) we get,

\(0 \approx \left( {{D^2} + 5} \right)\left( {{A_1}\cos (0.915x) + {A_2}\sin (0.915x) + {A_3}\cos (2.676x) + {A_4}\sin (2.676x)} \right) - 3y(t)\)

\(\begin{array}{*{20}{c}}{0 \approx }&{{D^2}{A_1}\cos (0.915x) + {D^2}{A_2}\sin (0.915x) + {D^2}{A_3}\cos (2.676x) + {D^2}{A_4}\sin (2.676x)}\\{}&{ + 5{A_1}\cos (0.915x) + 5{A_2}\sin (0.915x) + 5{A_3}\cos (2.676x) + 5{A_4}\sin (2.676x) - 3y(t)}\end{array}\)

\(\begin{array}{*{20}{c}}0&{ \approx {A_1}{D^2}(\cos (0.915x)) + {A_2}{D^2}(\sin (0.915x)) + {A_3}{D^2}(\cos (2.676x)) + {A_4}{D^2}(\sin (2.676x)) + 5{A_1}\cos (0.915x)}\\{}&{ + 5{A_2}\sin (0.915x) + 5{A_3}\cos (2.676x) + 5{A_4}\sin (2.676x) - 3y(t)}\end{array}\)\(\begin{array}{l}0 \approx - {A_1}(0.915)D(\sin (0.915x)) + {A_2}(0.915)D(\cos (0.915x)) - {A_3}(2.676)D(\sin (2.676x))\\ + {A_4}(2.676)D(\cos (2.676x)) + 5{A_1}\cos (0.915x) + 5{A_2}\sin (0.915x) + 5{A_3}\cos (2.676x) + 5{A_4}\sin (2.676x) - 3y(t)\end{array}\)\(\begin{array}{*{20}{c}}0&{ \approx - {A_1}{{(0.915)}^2}\cos (0.915x) - {A_2}{{(0.915)}^2}\sin (0.915x) - {A_3}{{(2.676)}^2}\cos (2.676x) - {A_4}{{(2.676)}^2}\sin (2.676x)}\\{}&{ + 5{A_1}\cos (0.915x) + 5{A_2}\sin (0.915x) + 5{A_3}\cos (2.676x) + 5{A_4}\sin (2.676x) - 3y(t)}\end{array}\) \(\begin{array}{*{20}{c}}0&{ \approx \left( { - {A_1}(0.837) + 5{A_1}} \right)\cos (0.915x) + \left( { - {A_2}(0.837) + 5{A_2}} \right)\sin (0.915x) + \left( { - {A_3}(7.160) + 5{A_3}} \right)\cos (2.676x)}\\{}&{ + \left( { - {A_4}(7.160) + 5{A_4}} \right)\sin (2.676x) - 3y(t)}\end{array}\)\(\begin{array}{*{20}{c}}0&{ \approx ( - (0.837) + 5){A_1}\cos (0.915x) + ( - (0.837) + 5){A_2}\sin (0.915x) + ( - (7.160) + 5){A_3}\cos (2.676x)}\\{}&{ + ((7.160) + 5){A_4}\sin (2.676x) - 3y(t)}\end{array}\) \(\begin{array}{*{20}{l}}{0 \approx (4.163){A_1}\cos (0.915x) + (4.163){A_2}\sin (0.915x) - (2.16){A_3}\cos (2.676x) - (2.16){A_4}\sin (2.676x) - 3y(y)}\\{0 \approx 4.163{A_1}\cos (0.915x) + 4.163{A_2}\sin (0.915x) - 2.16{A_3}\cos (2.676x) - 2.16{A_4}\sin (2.676x) - 3y(t)}\end{array}\) \( \Rightarrow 4.163{A_1}\cos (0.915x) + 4.163{A_2}\sin (0.915x) - 2.16{A_3}\cos (2.676x) - 2.16{A_4}\sin (2.676x) \approx 3y(t)\)Then

\(y(t) \approx 1.387{A_1}\cos (0.915x) + 1.387{A_2}\sin (0.915x) - 0.72{A_3}\cos (2.676x) - 0.72{A_4}\sin (2.676x)\)

This is the general solution for \(y(t)\)

06

Step 4:Find equation of motion for the system

Here given that, the object were displaced 1m to the right. Therefore

\(\begin{array}{*{20}{l}}{x(0) = 1,\frac{{dx(0)}}{{dt}} = 0}\\{y(0) = 1,\frac{{dy(0)}}{{dt}} = 0}\end{array}\)

\( \Rightarrow {A_1}\cos (0) + {A_2}\sin (0) + {A_3}\cos (0) + {A_4}\sin (0) \approx 1\) \((8)\)

\({A_1}(0.915)\sin (0) + {A_2}(0.915)\cos (0) - {A_3}(2.676)\sin (0) + {A_4}(2.676)\cos (0) \approx 0\) \((9)\)

\((1.387){A_1}\cos (0) + (1.387){A_2}\sin (0) - (0.72){A_3}\cos (0) - (0.72){A_4}\sin (0) \approx 1\) \((10)\)

\( - (1.387)(0.915){A_1}\sin (0) + (1.387)(0.915){A_2}\cos (0) + (0.72)(2.676){A_3}\sin (0) - (0.72)(2.676){A_4}\cos (0) \approx 0\) \((11)\)

From (8) \({A_1} + {A_3} = 1\) \((12)\)

From(9) \({A_2}(0.915) + {A_4}(2.676) \approx 0\) \((13)\)

From(10) \((1.387){A_1} - (0.72){A_3} \approx 1\) \((14)\)

Form(11) \((1.269){A_2} - (1.269){A_4} \approx 0\) \((15)\)

Form(12) \({A_1} = 1 - {A_3}\)

Putting the value of \({A_1}\) in (3)

\(\begin{array}{*{20}{c}}{\left( {1 - {A_3}} \right)(1.387) - {A_3}(0.72)}&{ \approx 1}\\{1.387 - {A_3}(1.387) - {A_3}(0.72)}&{ \approx 1}\\{1.387 - {A_3}(2.107)}&{ \approx 1}\\{{A_3} \approx 0.183}&{}\end{array}\)

Putting the value of \({A_3}\) in (12)

\(\begin{array}{l}{A_1} + 0.183 \approx 1\\{A_1} \approx 1 - 0.183 \approx 0.817\end{array}\)

From(15)

\(\begin{array}{l}(1.269)\left( {{A_2} - {A_4}} \right) \approx 0\\{A_2} - {A_4} \approx 0\\{A_2} \approx {A_4}\end{array}\)

Putting \({A_2} \approx {A_4}\) in (13)

\(\begin{array}{*{20}{r}}\begin{array}{l}{A_4}(0.915) + {A_4}(2.676) \approx 0\\{A_4}(3.591) \approx 0\end{array}\\{}\end{array}\)

Then

\(\begin{array}{*{20}{l}}{{A_4} \approx 0}\\{{A_2} \approx 0}\end{array}\)

Hence

\(\begin{array}{*{20}{l}}{x(t) \approx {A_1}\cos (0.915x) + {A_3}\cos (2.676x)}\\{y(t) \approx (1.387){A_1}\cos (0.915x) - (0.72){A_3}\cos (2.676x)}\end{array}\)

are the equation of motion for the system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free