Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To prove Abel’s identity (26) for n = 3, proceed as follows:

(a) Let\({\bf{W}}\left( {\bf{x}} \right){\bf{ = W}}\left[ {{{\bf{y}}_{\bf{1}}}{\bf{,}}\,{{\bf{y}}_{\bf{2}}}{\bf{,}}\,{{\bf{y}}_{\bf{3}}}} \right]\left( {\bf{x}} \right)\). Use the product rule for differentiation to show

\({\bf{W'}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|{\bf{ + }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|{\bf{ + }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'''}}}\end{array}} \right|\)

(b) Show that the above expression reduces to

(32) \({\bf{W'}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'''}}}\end{array}} \right|\)

(c) Since each \({{\bf{y}}_{\bf{i}}}\) satisfies (17), show that

(33) \({{\bf{y}}_{\bf{i}}}^{\left( {\bf{3}} \right)}\left( {\bf{x}} \right){\bf{ = - }}\sum\limits_{{\bf{k = 1}}}^{\bf{3}} {{{\bf{p}}_{\bf{k}}}\left( {\bf{x}} \right){{\bf{y}}_{\bf{i}}}^{\left( {{\bf{3 - k}}} \right)}\left( {\bf{x}} \right),\,\,\,\,\,\,\,\,\,\,\left( {{\bf{i = 1,2,3}}} \right)} \)

(d) Substituting the expressions in (33) into (32), show that(34) \({\bf{W'}}\left( {\bf{x}} \right){\bf{ = - }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{W}}\left( {\bf{x}} \right)\)

(e) Deduce Abel’s identity by solving the first-order differential equation (34).

Short Answer

Expert verified
  1. Proved.
  2. Proved.
  3. Proved.
  4. \({\bf{W'}}\left( {\bf{x}} \right){\bf{ = - }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{W}}\left( {\bf{x}} \right)\)
  5. \({\bf{W = W}}\left( {\bf{0}} \right){{\bf{e}}^{{\bf{ - }}{{\bf{p}}_{\bf{1}}}{\bf{x}}}}\)

Step by step solution

01

(a) Step 1: Use the given information

Given that,

Let \({\bf{W}}\left( {\bf{x}} \right){\bf{ = W}}\left[ {{{\bf{y}}_{\bf{1}}}{\bf{,}}\,{{\bf{y}}_{\bf{2}}}{\bf{,}}\,{{\bf{y}}_{\bf{3}}}} \right]\left( {\bf{x}} \right)\)

Then, express the Wronskian,

\({\bf{W}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|\)

Use the product rule for differentiation,

\({\bf{W'}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|{\bf{ + }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|{\bf{ + }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'''}}}\end{array}} \right|\)

02

(b) Step 2: Find the determinant of the expression of part (a), 

From part (a),

\({\bf{W'}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|{\bf{ + }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|{\bf{ + }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'''}}}\end{array}} \right|\)

Find the determinant of the above expression,

Here two rows are identical,

Therefore,

\(\begin{array}{c}{\bf{W'}}\left( {\bf{x}} \right){\bf{ = 0 + 0 + }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'''}}}\end{array}} \right|\\{\bf{W'}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'''}}}\end{array}} \right|\end{array}\)

03

(c) Step 3: Use the given information each \({{\bf{y}}_{\bf{i}}}\) satisfies (17),

Equation (17); Let \({{\bf{y}}_{\bf{1}}}{\bf{,}}\,{{\bf{y}}_{\bf{2}}}{\bf{,}}...,\,{{\bf{y}}_{\bf{n}}}\)be n solutions on (a, b) of

\({{\bf{y}}^{\left( {\bf{n}} \right)}}\left( {\bf{x}} \right){\bf{ + }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){{\bf{y}}^{\left( {{\bf{n - 1}}} \right)}}\left( {\bf{x}} \right){\bf{ + }}...{\bf{ + }}{{\bf{p}}_{\bf{n}}}\left( {\bf{x}} \right){\bf{y}}\left( {\bf{x}} \right){\bf{ = 0}}\)

We can write as,

\({{\bf{y}}_{\bf{i}}}^{\left( {\bf{n}} \right)}\left( {\bf{x}} \right){\bf{ = - }}\sum\limits_{{\bf{k = 1}}}^{\bf{n}} {{{\bf{p}}_{\bf{k}}}\left( {\bf{x}} \right){{\bf{y}}_{\bf{i}}}^{\left( {{\bf{n - k}}} \right)}\left( {\bf{x}} \right)} \)

We need to show that for n=3,

\({{\bf{y}}_{\bf{i}}}^{\left( {\bf{3}} \right)}\left( {\bf{x}} \right){\bf{ = - }}\sum\limits_{{\bf{k = 1}}}^{\bf{3}} {{{\bf{p}}_{\bf{k}}}\left( {\bf{x}} \right){{\bf{y}}_{\bf{i}}}^{\left( {{\bf{3 - k}}} \right)}\left( {\bf{x}} \right),\,\,\,\,\,\,\,\,\,\,\left( {{\bf{i = 1,2,3}}} \right)} \)

04

(d) Step 4: We need to show that,\({\bf{W'}}\left( {\bf{x}} \right){\bf{ =  - }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{W}}\left( {\bf{x}} \right)\).

From part (c),

\({{\bf{y}}_{\bf{i}}}^{\left( {\bf{3}} \right)}\left( {\bf{x}} \right){\bf{ = - }}\sum\limits_{{\bf{k = 1}}}^{\bf{3}} {{{\bf{p}}_{\bf{k}}}\left( {\bf{x}} \right){{\bf{y}}_{\bf{i}}}^{\left( {{\bf{3 - k}}} \right)}\left( {\bf{x}} \right),\,\,\,\,\,\,\,\,\,\,\left( {{\bf{i = 1,2,3}}} \right)} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( {\bf{1}} \right)\)

And from part (b),\({\bf{W'}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'''}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'''}}}\end{array}} \right|\,\,\,\,\,\,\,......\left( {\bf{2}} \right)\)

Substituting the expressions in (1) into (2),

Substitute \({{\bf{y}}_{\bf{i}}}{\bf{'''}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){{\bf{y}}_{\bf{i}}}^{{\bf{''}}}\left( {\bf{x}} \right)\)in the equation (2),

\(\begin{array}{l}{\bf{W'}}\left( {\bf{x}} \right){\bf{ = }}\left| {\begin{array}{*{20}{c}}{{{\bf{y}}_{\bf{1}}}}&{{{\bf{y}}_{\bf{2}}}}&{{{\bf{y}}_{\bf{3}}}}\\{{{\bf{y}}_{\bf{1}}}{\bf{'}}}&{{{\bf{y}}_{\bf{2}}}{\bf{'}}}&{{{\bf{y}}_{\bf{3}}}{\bf{'}}}\\{{\bf{ - }}{{\bf{p}}_{\bf{1}}}{{\bf{y}}_{\bf{1}}}{\bf{''}}}&{{\bf{ - }}{{\bf{p}}_{\bf{1}}}{{\bf{y}}_{\bf{2}}}{\bf{''}}}&{{\bf{ - }}{{\bf{p}}_{\bf{1}}}{{\bf{y}}_{\bf{3}}}{\bf{''}}}\end{array}} \right|\\{\bf{W'}}\left( {\bf{x}} \right){\bf{ = - }}{{\bf{p}}_{\bf{1}}}{\bf{W}}\\{\bf{W'}}\left( {\bf{x}} \right){\bf{ = - }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{W}}\left( {\bf{x}} \right)\end{array}\)

05

(e) Step 5: Use the part (d) and integrate the given equation

From part (d),

\({\bf{W'}}\left( {\bf{x}} \right){\bf{ = - }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{W}}\left( {\bf{x}} \right)\)

Cross multiplication of both sides in the above equation

\(\frac{{{\bf{W'}}\left( {\bf{x}} \right)}}{{{\bf{W}}\left( {\bf{x}} \right)}}{\bf{ = - }}{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right)\)

Taking integration of both sides in the above equation

\(\begin{array}{c}\int {\frac{{{\bf{W'}}\left( {\bf{x}} \right)}}{{{\bf{W}}\left( {\bf{x}} \right)}}} {\bf{ = - }}\int {{{\bf{p}}_{\bf{1}}}\left( {\bf{x}} \right){\bf{dx}}} \\{\bf{ln}}\left( {\bf{W}} \right){\bf{ = - }}{{\bf{p}}_{\bf{1}}}{\bf{x + ln}}\left( {\bf{A}} \right)\end{array}\)

Simplify the above equation

\(\begin{array}{l}\frac{{{\bf{ln}}\left( {\bf{W}} \right)}}{{{\bf{ln}}\left( {\bf{A}} \right)}}{\bf{ = - }}{{\bf{p}}_{\bf{1}}}{\bf{x}}\\\frac{{\bf{W}}}{{\bf{A}}}{\bf{ = }}{{\bf{e}}^{{\bf{ - }}{{\bf{p}}_{\bf{1}}}{\bf{x}}}}\\{\bf{W = A}}{{\bf{e}}^{{\bf{ - }}{{\bf{p}}_{\bf{1}}}{\bf{x}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( {\bf{3}} \right)\end{array}\)

At x=0,

\(\begin{array}{c}{\bf{W}}\left( {\bf{0}} \right){\bf{ = A}}{{\bf{e}}^{{\bf{ - }}{{\bf{p}}_{\bf{1}}}\left( {\bf{0}} \right)}}\\{\bf{W}}\left( {\bf{0}} \right){\bf{ = A}}\end{array}\)

Substitute the value of A in the equation (3),

\({\bf{W = W}}\left( {\bf{0}} \right){{\bf{e}}^{{\bf{ - }}{{\bf{p}}_{\bf{1}}}{\bf{x}}}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free