Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the set of functions\(\left\{ {{\bf{1,}}\,{\bf{cosx,}}\,{\bf{sinx,}}...{\bf{,}}\,{\bf{cosnx,}}\,{\bf{sinnx}}} \right\}\),

where n is a positive integer is linearly independent on every open interval (a, b). Prove this in the special case n = 2 and (a, b) = \(\left( {{\bf{ - }}\infty {\bf{,}}\,\infty } \right)\)

Short Answer

Expert verified

Therefore this set is from the linearly independent set on every open interval\(\left( {{\bf{ - }}\infty {\bf{,}}\,\infty } \right)\).Step-by-Step Solution

Step by step solution

01

Use the fact that a polynomial of degree at most n has no more than n zeros unless it is identically zero.

A polynomial of degree n,

\({{\bf{a}}_{\bf{0}}}{\bf{1 + }}{{\bf{a}}_{\bf{1}}}\left( {{\bf{cosx + sinx}}} \right){\bf{ + }}{{\bf{a}}_{\bf{2}}}\left( {{\bf{cos2x + sin2x}}} \right){\bf{ + }}...{\bf{ + }}{{\bf{a}}_{\bf{n}}}\left( {{\bf{cosnx + sinnx}}} \right){\bf{ = 0}}\)

We need to prove for n = 2,

\({{\bf{a}}_{\bf{0}}}{\bf{1 + }}{{\bf{a}}_{\bf{1}}}\left( {{\bf{cosx + sinx}}} \right){\bf{ + }}{{\bf{a}}_{\bf{2}}}\left( {{\bf{cos2x + sin2x}}} \right){\bf{ = 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( {\bf{1}} \right)\)

Substitute \({\bf{x = 0}}\)in the above expression,

\(\begin{array}{c}{{\bf{a}}_{\bf{0}}}{\bf{1 + }}{{\bf{a}}_{\bf{1}}}\left( {{\bf{cos}}\left( {\bf{0}} \right){\bf{ + sin}}\left( {\bf{0}} \right)} \right){\bf{ + }}{{\bf{a}}_{\bf{2}}}\left( {{\bf{cos2}}\left( {\bf{0}} \right){\bf{ + sin2}}\left( {\bf{0}} \right)} \right){\bf{ = 0}}\\{{\bf{a}}_{\bf{0}}}{\bf{ + }}{{\bf{a}}_{\bf{1}}}{\bf{ + }}{{\bf{a}}_{\bf{2}}}{\bf{ = 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( {\bf{2}} \right)\end{array}\)

Take the derivative with respect to x, in equation (1),

\({{\bf{a}}_{\bf{1}}}\left( {{\bf{ - sinx + cosx}}} \right){\bf{ + }}{{\bf{a}}_{\bf{2}}}\left( {{\bf{ - 2sin2x + 2cos2x}}} \right){\bf{ = 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( {\bf{3}} \right)\)

Substitute \({\bf{x = 0}}\)in the above expression,

\(\begin{array}{c}{{\bf{a}}_{\bf{1}}}\left( {{\bf{ - sin}}\left( {\bf{0}} \right){\bf{ + cos}}\left( {\bf{0}} \right)} \right){\bf{ + }}{{\bf{a}}_{\bf{2}}}\left( {{\bf{ - 2sin2}}\left( {\bf{0}} \right){\bf{ + 2cos2}}\left( {\bf{0}} \right)} \right){\bf{ = 0}}\\{{\bf{a}}_{\bf{1}}}{\bf{ + 2}}{{\bf{a}}_{\bf{2}}}{\bf{ = 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( {\bf{4}} \right)\end{array}\)

Take the derivative with respect to x, in equation (3),

\({{\bf{a}}_{\bf{1}}}\left( {{\bf{ - cosx - sinx}}} \right){\bf{ + }}{{\bf{a}}_{\bf{2}}}\left( {{\bf{ - 4cos2x - 4sin2x}}} \right){\bf{ = 0}}\)

Substitute \({\bf{x = 0}}\)in the above expression,

\(\begin{array}{c}{{\bf{a}}_{\bf{1}}}\left( {{\bf{ - cos}}\left( {\bf{0}} \right){\bf{ - sin}}\left( {\bf{0}} \right)} \right){\bf{ + }}{{\bf{a}}_{\bf{2}}}\left( {{\bf{ - 4cos2}}\left( {\bf{0}} \right){\bf{ - 4sin2}}\left( {\bf{0}} \right)} \right){\bf{ = 0}}\\{\bf{ - }}{{\bf{a}}_{\bf{1}}}{\bf{ - 4}}{{\bf{a}}_{\bf{2}}}{\bf{ = 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( {\bf{5}} \right)\end{array}\)

02

Find the value of \({{\bf{a}}_{\bf{0}}}{\bf{,}}\,{{\bf{a}}_{\bf{1}}}\)and\({{\bf{a}}_{\bf{2}}}\),

Solve the equation (4) and (5),

\(\begin{array}{c}{{\bf{a}}_{\bf{1}}}{\bf{ + 2}}{{\bf{a}}_{\bf{2}}}{\bf{ = 0}}\\{\bf{ - }}{{\bf{a}}_{\bf{1}}}{\bf{ - 4}}{{\bf{a}}_{\bf{2}}}{\bf{ = 0}}\\{\bf{ - 2}}{{\bf{a}}_{\bf{2}}}{\bf{ = 0}}\\{{\bf{a}}_{\bf{2}}}{\bf{ = 0}}\end{array}\)

Substitute the value of \({{\bf{a}}_{\bf{2}}}\) in the equation (4),

\(\begin{array}{c}{{\bf{a}}_{\bf{1}}}{\bf{ + 2}}\left( {\bf{0}} \right){\bf{ = 0}}\\{{\bf{a}}_{\bf{1}}}{\bf{ = 0}}\end{array}\)

Substitute the value of \({{\bf{a}}_{\bf{1}}}\) and \({{\bf{a}}_{\bf{2}}}\) in the equation (2),

\(\begin{array}{c}{{\bf{a}}_{\bf{0}}}{\bf{ + }}\left( {\bf{0}} \right){\bf{ + }}\left( {\bf{0}} \right){\bf{ = 0}}\\{{\bf{a}}_{\bf{0}}}{\bf{ = 0}}\end{array}\)

03

conclusion,Step 3: conclusion,

Therefore, from this process, we can show that

\({{\bf{a}}_{\bf{0}}}{\bf{ = 0,}}\,{{\bf{a}}_{\bf{1}}}{\bf{ = 0,}}\,{{\bf{a}}_{\bf{2}}}{\bf{ = 0,}}\,\)

Therefore this set is from the linearly independent set on every open interval\(\left( {{\bf{ - }}\infty {\bf{,}}\,\infty } \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free