Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An object of mass 100kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of 1/40 times the weight of the object is pushing the object up (weight = mg). If we assume that water resistance exerts a force on the object that is proportional to the velocity of the object, with proportionality constant 10N-sec/m , find the equation of motion of the object. After how many seconds will the velocity of the object be 70 m/sec ?

Short Answer

Expert verified

The result is x(t)=95.65t-956.5e-t10-956.5 and time taken by the object is 13.2 sec .

Step by step solution

01

Important hint.

Use Newton’s method to solve for t tn+1=tn-f(tn)f'(tn).

02

Find the equation of motion

The total force acting on the object is F-mg-bv-140mg.

Applying newton’s second law:

100dvdt=100(9.81)-10v-1(100)(9.81)40

v'=9.56-0.1vv'+0.1v=9.56v'+0.1v=9.56onsolvingbyvariableseparating

When v(0)=0,thenC=-95.65.

v=95.65-95.65e-t10x(t)=95.65t-956.5e-t10+c …… (1)

When x(0)=0,thenC=-956.5.

x(t)=95.65t-956.5e-t10-956.5

03

Find the value of t

When the object travelling at the velocity 70m/sec then by equation (1).

70=95.65t-956.5e-t1070=95.65(1-e-t10)t=13.2sec

Therefore, the result is x(t)=95.65t-956.5e-t10-956.5 and t=13.2sec.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In 1990 the Department of Natural Resources released 1000 splake (a crossbreed of fish) into a lake. In 1997 the population of splake in the lake was estimated to be 3000. Using the Malthusian law for population growth, estimate the population of splake in the lake in the year 2020.

A swimming pool whose volume is 10,000 gal contains water that is 0.01% chlorine. Starting at t = 0, city water containing 0.001% chlorine is pumped into the pool at a rate of 5 gal/min. The pool water flows out at the same rate. What is the percentage of chlorine in the pool after 1 h? When will the pool water be 0.002% chlorine?

It was noon on a cold December day in Tampa: 16°C. Detective Taylor arrived at the crime scene to find the sergeant leaning over the body. The sergeant said there were several suspects. If they knew the exact time of death, then they could narrow the list. Detective Taylor took out a thermometer and measured the temperature of the body: 34.5°C. He then left for lunch. Upon returning at 1:00 p.m., he found the body temperature to be 33.7°C. When did the murder occur? [Hint: Normal body temperature is 37°C.]

The air in a small room 12 ft by 8 ft by 8 ft is 3% carbon monoxide. Starting at t = 0, fresh air containing no carbon monoxide is blown into the room at a rate of 100ft3/min. If air in the room flows out through a vent at the same rate, when will the air in the room be 0.01% carbon monoxide?

If the Taylor method of order p is used in Problem 17, show that \({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{6}}{{\bf{n}}^{\bf{3}}}}}{\bf{ + }}.....{\bf{ + }}\frac{{\bf{1}}}{{{\bf{p!}}{{\bf{n}}^{\bf{p}}}}}} \right)^{\bf{n}}}\), n = 1, 2, …

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free