Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Escape Velocity.According to Newton’s law of gravitation, the attractive force between two objects varies inversely as the square of the distances between them. That is,Fg=GM1M2/r2whereM1andM2are the masses of the objects, ris the distance between them (center to center), Fgis the attractive force, and Gis the constant of proportionality. Consider a projectile of

constant mass mbeing fired vertically from Earth (see Figure 3.12). Let trepresent time and v the velocity of the projectile.

  1. Show that the motion of the projectile, under Earth’s gravitational force, is governed by the equationdvdt=-gR2r2, where ris the distance between the projectile and the center of Earth, Ris the radius of Earth, Mis the mass of Earth, andg=GM/R2.
  2. Use the fact that dr /dt = v to obtainvdvdt=-gR2r2
  3. If the projectile leaves Earth’s surface with velocity vo, show thatv2=2gR2r+vo2-2gR
  4. Use the result of part (c) to show that the velocity of the projectile remains positive if and only ifvo2-2gR>0. The velocityve=2gRis called the escape velocityof Earth.
  5. If g= 9.81 m/sec 2and R= 6370 km for Earth, what is Earth’s escape velocity?
  6. If the acceleration due to gravity for the moon is gm= g/6 and the radius of the moon is Rm= 1738 km, what is the escape velocity of the moon?

Short Answer

Expert verified
  1. Proved
  2. Proved
  3. Proved.
  4. Proved
  5. The earth’s escape velocity is 11.18 km/sec.
  6. The escape velocity of the moon is 2.38 km/sec.

Step by step solution

01

Step 1(a): Find the motion of the projectile

Here M1 = M and M2 = m

By using the newton’s second law

mdvdt=-Fgmdvdt=-GMmr2dvdt=-GMr2dvdt=-gR2r2(BecauseG=gR2M)

Hence it is proved thatrole="math" localid="1663971026881" dvdt=-gR2r2

02

Step 2(b): obtain vdvdt=-gR2r2

Since

v=drdtdvdt=dvdr.drdtdvdt=vdvdrvdvdt=-gR2r2

Hence it is proved that vdvdt=-gR2r2

03

Step 3(c): show that  v2=2gR2r+vo2-2gR

vdv=-gR2r2drv22=gR2r+Cv2=2gR2r+2C

WhenvR=vo thenC =vo22- gR

v2=2gR2r+vo2-2gR

Hence it is proved that role="math" localid="1663971538088" v2=2gR2r+vo2-2gR

04

Step 4(d): obtain the required result by given conditions

The velocity of the projectile remains the same if and only if

2gR2r+vo2-gR>02gR2r+vo2>2gRlimr2gR2r+vo2>2gRvo2>2gRvo2-2gR>0

Hence it is proved thatthe velocity of the projectile remains positive if and only ifrole="math" localid="1663971976334" vo2-2gR>0.

05

Step 5(e): Find the earth’s escape velocity

The escape velocity is

ve=2gRve=2(0.00981)(6370)ve=11.18km/sec

Hence, the earth’s escape velocity is 11.18 km/sec.

06

Step 6(f): Find the value of the moon’s escape velocity

ve=2gRve=2(0.001635)(1738)ve=2.38km/sec

Hence, the escape velocity of the moon is 2.38 km/sec.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Local versus Global Error. In deriving formula (4) for Euler’s method, a rectangle was used to approximate the area under a curve (see Figure 3.14). With

\({\bf{g(t) = f(t,f(t))}}\), this approximation can be written as \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt}} \approx {\bf{hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \)where \({\bf{h = }}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ - }}{{\bf{x}}_{\bf{n}}}\) .

  1. Show that if g has a continuous derivative that is bounded in absolute value by B, then the rectangle approximation has error\(\left( {\bf{O}} \right){{\bf{h}}^{\bf{2}}}\); that is, for some constant M, \(\left| {\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} } \right| \le {\bf{M}}{{\bf{h}}^{\bf{2}}}\).This is called the local truncation error of the scheme. [Hint: Write \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} {\bf{ = }}\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {\left[ {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right]{\bf{dt}}} \). Next, using the mean value theorem, show that\(\left| {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right| \le {\bf{B}}\left| {{\bf{t - }}{{\bf{x}}_{\bf{n}}}} \right|\) . Then integrate to obtain the error bound\(\left( {\frac{{\bf{B}}}{{\bf{2}}}} \right){{\bf{h}}^{\bf{2}}}\).]
  2. In applying Euler’s method, local truncation errors occur in each step of the process and are propagated throughout the further computations. Show that the sum of the local truncation errors in part (a) that arise after n steps is (O)h. This is the global error, which is the same as the[ss1] [m2] convergence rate of Euler’s method.


Early Monday morning, the temperature in the lecture hall has fallen to 40°F, the same as the temperature outside. At7:00a.m., the janitor turns on the furnace with the thermostat set at70°F. The time constant for the building is1k=2hrand that for the building along with its heating system is1k1=12hr. Assuming that the outside temperature remains constant, what will be the temperature inside the lecture hall at8:00a.m.? When will the temperature inside the hall reach65°F?

When the velocity v of an object is very large, the magnitude of the force due to air resistance is proportional to v2 with the force acting in opposition to the motion of the object. A shell of mass 3 kg is shot upward from the ground with an initial velocity of 500 m/sec. If the magnitude of the force due to air resistance is 0.1v2, when will the shell reach its maximum height above the ground? What is the maximum height?

Use the fourth-order Runge–Kutta subroutine with h= 0.1 to approximate the solution to\({\bf{y' = 3cos(y - 5x),y(0) = 0}}\) , at the points x= 0, 0.1, 0.2, . . ., 4.0. Use your answers to make a rough sketch of the solution on [0, 4].

A sailboat has been running (on a straight course) under a light wind at 1 m/sec. Suddenly the wind picks up, blowing hard enough to apply a constant force of 600 N to the sailboat. The only other force acting on the boat is water resistance that is proportional to the velocity of the boat. If the proportionality constant for water resistance is b= 100 N-sec/m and the mass of the sailboat is 50 kg, find the equation of motion of the sailboat. What is the limiting velocity of the sailboat under this wind?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free