Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An object at rest on an inclined plane will not slide until the component of the gravitational force down the incline is sufficient to overcome the force due to static friction. Static friction is governed by an experimental law somewhat like that of kinetic friction (Problem 18); it has a magnitude of at mostN, where m is the coefficient of static friction and Nis, again, the magnitude of the normal force exerted by the surface on the object. If the plane is inclined at an angle a, determine the critical value0for which the object will slide ifa>ao but will not move fora<ao.

Short Answer

Expert verified

Therefore, the object starts sliding down when tanαo>μ.

Step by step solution

01

Draw a diagram

02

Find the critical value

Here C is the center of mass of an object. As the object starting sliding down

mgsinαo>μN

However, μN=μmgcosαo

Hence the object starts sliding down whenmgsinαo>μmgcosαo

sinαo>μcosαo

Assume that the inclined plain is not vertical. Hence,cosαo0 . Then

sinαocosαo=tanαo

Both μand tanαoare positive,

so tanαo=tanαoandμ=μ

Therefore, the object starts sliding down when role="math" localid="1664209459647" tanαo>μ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problems 23–27, assume that the rate of decay of a radioactive substance is proportional to the amount of the substance present. The half-life of a radioactive substance is the time it takes for one-half of the substance to disintegrate. The only undiscovered isotopes of the two unknown elements hohum and inertium (symbols Hh and It) are radioactive. Hohum decays into inertium with a decay constant of 2/yr, and inertium decays into the nonradioactive isotope of bunkum (symbol Bu) with a decay constant of 1/yr. An initial mass of 1 kg of hohum is put into a non-radiaoctive container, with no other source of hohum, inertium, or bunkum. How much of each of the three elements is in the container after t yr? (The decay constant is the constant of proportionality in the statement that the rate of loss of mass of the element at any time is proportional to the mass of the element at that time.)

Beginning at time t=0, fresh water is pumped at the rate of 3 gal/min into a 60-gal tank initially filled with brine. The resulting less-and-less salty mixture overflows at the same rate into a second 60-gal tank that initially contained only pure water, and from there it eventually spills onto the ground. Assuming perfect mixing in both tanks, when will the water in the second tank taste saltiest? And exactly how salty will it then be, compared with the original brine?

Determine the recursive formulas for the Taylor method of order 2 for the initial value problemy'=cos(x+y),y(0)=π.

Determine the recursive formulas for the Taylor method of order 4 for the initial value problem y'=x2+y,y(0)=0.

When the velocity v of an object is very large, the magnitude of the force due to air resistance is proportional to v2 with the force acting in opposition to the motion of the object. A shell of mass 3 kg is shot upward from the ground with an initial velocity of 500 m/sec. If the magnitude of the force due to air resistance is 0.1v2, when will the shell reach its maximum height above the ground? What is the maximum height?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free