Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the equation for the angular velocity ω in Problem15, assuming that the retarding torque is proportional to role="math" localid="1663966970646" ω

Short Answer

Expert verified

The equation of angular velocity is (Kω-TlnT-Kω)=(Kωo-TlnT-Kωo)-K2t2I

Step by step solution

01

Find the equation for the angular velocity

Here the notations are T= torque for motor,ω= angular velocity, I = moment of inertia and ω0= initial angular velocity.

According To the question retarding torque due to friction is proportional to the angular velocity so, T1=-Kω (K is proportionality constant)

Now moment of inertia × angular velocity = sum of the torques

Idωdt=T-KωIT-Kω=dtVariable separating-2IωK-2ITlnT-KωK2=t+CIntegrating on both sides2IK(ω-ITlnT-KωK)=t+C(ω-ITlnT-KωK)=-Kt2I+C1(Kω-TlnT-Kω)=-K2t2I+A

02

Find the value of A

Put ω0=ω0then value of A.

A=(Kωo-TlnT-Kωo)(Kω-TlnT-Kω)=(Kωo-TlnT-Kωo)-K2t2I

Hence, the equation of angular velocity is (Kω-TlnT-Kω)=(Kωo-TlnT-Kωo)-K2t2I.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Falling Body.In Example 1 of Section 3.4, page 110, we modeled the velocity of a falling body by the initial value problem \({\bf{m}}\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = mg - bv,v(0) = }}{{\bf{v}}_{\bf{o}}}{\bf{ = 0}}\)under the assumption that the force due to air resistance is –bv. However, in certain cases the force due to air resistance behaves more like\({\bf{ - b}}{{\bf{v}}^{\bf{r}}}\), where \({\bf{(r > 1)}}\) is some constant. This leads to the model \({\bf{m}}\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = mg - b}}{{\bf{v}}^{\bf{r}}}{\bf{,v(0) = }}{{\bf{v}}_{\bf{o}}}\) (14).To study the effect of changing the parameter rin (14),take \({\bf{m = 1,}}\,\,{\bf{g = 9}}{\bf{.81,}}\,\,{\bf{b = 2}}\) and \({{\bf{v}}_{\bf{o}}}{\bf{ = 0}}\).Then use the improved Euler’s method subroutine with \({\bf{h = 0}}{\bf{.2}}\) to approximate the solution to (14) on the interval \(0 \le {\bf{t}} \le 5\)for \({\bf{r = 1}}{\bf{.0,}}\,\,{\bf{1}}{\bf{.5}}\) and 2.0. What is the relationship between these solutions and the constant solution\({\bf{v(t) = }}{\left( {\frac{{{\bf{9}}{\bf{.81}}}}{{\bf{2}}}} \right)^{\frac{{\bf{1}}}{{\bf{r}}}}}\)?

Local versus Global Error. In deriving formula (4) for Euler’s method, a rectangle was used to approximate the area under a curve (see Figure 3.14). With

\({\bf{g(t) = f(t,f(t))}}\), this approximation can be written as \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt}} \approx {\bf{hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \)where \({\bf{h = }}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ - }}{{\bf{x}}_{\bf{n}}}\) .

  1. Show that if g has a continuous derivative that is bounded in absolute value by B, then the rectangle approximation has error\(\left( {\bf{O}} \right){{\bf{h}}^{\bf{2}}}\); that is, for some constant M, \(\left| {\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} } \right| \le {\bf{M}}{{\bf{h}}^{\bf{2}}}\).This is called the local truncation error of the scheme. [Hint: Write \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} {\bf{ = }}\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {\left[ {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right]{\bf{dt}}} \). Next, using the mean value theorem, show that\(\left| {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right| \le {\bf{B}}\left| {{\bf{t - }}{{\bf{x}}_{\bf{n}}}} \right|\) . Then integrate to obtain the error bound\(\left( {\frac{{\bf{B}}}{{\bf{2}}}} \right){{\bf{h}}^{\bf{2}}}\).]
  2. In applying Euler’s method, local truncation errors occur in each step of the process and are propagated throughout the further computations. Show that the sum of the local truncation errors in part (a) that arise after n steps is (O)h. This is the global error, which is the same as the[ss1] [m2] convergence rate of Euler’s method.


A parachutist whose mass is 100 kgdrops from a helicopter hovering 3000 m above the ground and falls under the influence of gravity. Assume that the force due to air resistance is proportional to the velocity of the parachutist, with the proportionality constant b3=20 N-sec/mwhen the chute is closed andb4=100 N-sec/m when the chute is open. If the chute does not open until 30 sec after the parachutist leaves the helicopter, after how many seconds will he hit the ground? If the chute does not open until 1 min after he leaves the helicopter, after how many seconds will he hit the ground?

It was noon on a cold December day in Tampa: 16°C. Detective Taylor arrived at the crime scene to find the sergeant leaning over the body. The sergeant said there were several suspects. If they knew the exact time of death, then they could narrow the list. Detective Taylor took out a thermometer and measured the temperature of the body: 34.5°C. He then left for lunch. Upon returning at 1:00 p.m., he found the body temperature to be 33.7°C. When did the murder occur? [Hint: Normal body temperature is 37°C.]

In Problem 14, suppose we have the additional information that the population of alligators on the grounds of the Kennedy Space Center in 1993 was estimated to be 4100. Use a logistic model to estimate the population ofalligators in the year 2020. What is the predicted limiting population? [Hint: Use the formulas in Problem 12.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free