Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Falling Body.In Example 1 of Section 3.4, page 110, we modeled the velocity of a falling body by the initial value problem \({\bf{m}}\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = mg - bv,v(0) = }}{{\bf{v}}_{\bf{o}}}{\bf{ = 0}}\)under the assumption that the force due to air resistance is –bv. However, in certain cases the force due to air resistance behaves more like\({\bf{ - b}}{{\bf{v}}^{\bf{r}}}\), where \({\bf{(r > 1)}}\) is some constant. This leads to the model \({\bf{m}}\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = mg - b}}{{\bf{v}}^{\bf{r}}}{\bf{,v(0) = }}{{\bf{v}}_{\bf{o}}}\) (14).To study the effect of changing the parameter rin (14),take \({\bf{m = 1,}}\,\,{\bf{g = 9}}{\bf{.81,}}\,\,{\bf{b = 2}}\) and \({{\bf{v}}_{\bf{o}}}{\bf{ = 0}}\).Then use the improved Euler’s method subroutine with \({\bf{h = 0}}{\bf{.2}}\) to approximate the solution to (14) on the interval \(0 \le {\bf{t}} \le 5\)for \({\bf{r = 1}}{\bf{.0,}}\,\,{\bf{1}}{\bf{.5}}\) and 2.0. What is the relationship between these solutions and the constant solution\({\bf{v(t) = }}{\left( {\frac{{{\bf{9}}{\bf{.81}}}}{{\bf{2}}}} \right)^{\frac{{\bf{1}}}{{\bf{r}}}}}\)?

Short Answer

Expert verified

When \({\bf{r = 1}}{\bf{.0}}\), the constant solution is\({\bf{v(t) = 4}}{\bf{.905}}\).

When \({\bf{r = }}\,\,{\bf{1}}{\bf{.5}}\), the constant solution is \({\bf{v(t) = }}2.887\).

When \({\bf{r = }}\,\,{\bf{2}}{\bf{.0}}\), the constant solution is \({\bf{v(t) = }}2.215\).

Step by step solution

01

Important hint

For the solution apply Euler’s formula.

02

Find the value of temperature when \({\bf{r = 1}}{\bf{.0}}\).

The given equation is

\(\begin{array}{l}{\bf{v(0) = 0}}\\\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = 9}}{\bf{.81 - 2}}{{\bf{v}}^{\bf{r}}}\end{array}\)

Now apply improved Euler’s method subroutine with \({\bf{h = 0}}{\bf{.2}}\) and \({\bf{N = 25}}\).

\(\begin{array}{c}{\bf{f(t,T) = 9}}{\bf{.81 - 2v}}\\{\bf{G = f(t + h,v + hF)}}\\{\bf{ = 9}}{\bf{.81 - 2(v + 0}}{\bf{.2(9}}{\bf{.81 - 2v))}}\end{array}\)

Apply initial conditions \({\bf{t = }}{{\bf{t}}_{\bf{o}}}{\bf{ = 0,v = }}{{\bf{v}}_{\bf{o}}}{\bf{ = 0}}\).

\(\begin{array}{c}{\bf{F(0,0) = 0}}{\bf{.2}}\\{\bf{G(0,0) = 5}}{\bf{.886}}\\{\bf{t = }}{{\bf{t}}_{\bf{0}}}{\bf{ + h = 0}}{\bf{.2}}\\{\bf{T = }}{{\bf{T}}_{\bf{o}}}{\bf{ + h}}\frac{{{\bf{F + G}}}}{{\bf{2}}}{\bf{ = 1}}{\bf{.570}}\end{array}\)

Therefore, at \({\bf{x = 0}}{\bf{.2}}\), the solutions are approximately \({\bf{v = 1}}{\bf{.570}}\).

The other values are

t

v

t

v

t

v

0.4

2.637

2

4.801

3.6

4.900

0.6

3.363

2.2

4.834

3.8

4.902

0.8

3.856

2.4

4.857

4

4.903

1

4.192

2.6

4.872

4.2

4.904

1.2

4.420

2.8

4.883

4.4

4.904

1.4

4.575

3

4.890

4.6

4.904

1.6

4.681

3.2

4.895

4.8

4.905

1.8

4.753

3.4

4.898

5

4.905

03

Determine the value of temperature when\({\bf{r = 1}}{\bf{.5}}\).

The given equation is

\(\begin{array}{c}{\bf{v(0) = 0}}\\\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = 9}}{\bf{.81 - 2}}{{\bf{v}}^{\bf{r}}}\end{array}\)

Now apply improved Euler’s method subroutine with \({\bf{h = 0}}{\bf{.2}}\) and N=25.

\(\begin{array}{c}{\bf{f(t,T) = 9}}{\bf{.81 - 2}}{{\bf{v}}^{{\bf{1}}{\bf{.5}}}}\\{\bf{G = f(t + h,v + hF)}}\\{\bf{ = 9}}{\bf{.81 - 2(v + 0}}{\bf{.2(9}}{\bf{.81 - 2}}{{\bf{v}}^{{\bf{1}}{\bf{.5}}}}{\bf{)}}{{\bf{)}}^{{\bf{1}}{\bf{.5}}}}\end{array}\)

Apply initial conditions \({\bf{t = }}{{\bf{t}}_{\bf{o}}}{\bf{ = 0,v = }}{{\bf{v}}_{\bf{o}}}{\bf{ = 0}}\).

\(\begin{array}{c}{\bf{F(0,0) = 9}}{\bf{.81}}\\{\bf{G(0,0) = 4}}{\bf{.3136}}\\{\bf{t = }}{{\bf{t}}_{\bf{0}}}{\bf{ + h = 0}}{\bf{.2}}\\{\bf{T = }}{{\bf{T}}_{\bf{o}}}{\bf{ + h}}\frac{{{\bf{F + G}}}}{{\bf{2}}}\\{\bf{ = 1}}{\bf{.412}}\end{array}\)

Thus, at \({\bf{x = 0}}{\bf{.2}}\), the solutions are approximately \({\bf{v = 1}}.412\).

The other values are

t

v

t

v

t

v

0.4

2.150

2

2.884

3.6

2.887

0.6

2.519

2.2

2.885

3.8

2.887

0.8

2.703

2.4

2.886

4

2.887

1

2.795

2.6

2.887

4.2

2.887

1.2

2.841

2.8

2.887

4.4

2.887

1.4

2.864

3

2.887

4.6

2.887

1.6

2.875

3.2

2.887

4.8

2.887

1.8

2.881

3.4

2.887

5

2.887

04

Evaluate the value of temperature when \({\bf{r = }}2.0\).

The given equation is

\(\begin{array}{c}{\bf{v(0) = 0}}\\\frac{{{\bf{dv}}}}{{{\bf{dt}}}}{\bf{ = 9}}{\bf{.81 - 2}}{{\bf{v}}^{\bf{r}}}\end{array}\)

Now apply improved Euler’s method subroutine with \({\bf{h = 0}}{\bf{.2}}\) and \({\bf{N = 25}}\).

\(\begin{array}{c}{\bf{f(t,T) = 9}}{\bf{.81 - 2}}{{\bf{v}}^{\bf{2}}}\\{\bf{G = f(t + h,v + hF)}}\\{\bf{ = 9}}{\bf{.81 - 2(v + 0}}{\bf{.2(9}}{\bf{.81 - 2}}{{\bf{v}}^{\bf{2}}}{\bf{)}}{{\bf{)}}^{\bf{2}}}\end{array}\)

Apply initial conditions\({\bf{t = }}{{\bf{t}}_{\bf{o}}}{\bf{ = 0,v = }}{{\bf{v}}_{\bf{o}}}{\bf{ = 0}}\).

\(\begin{array}{c}{\bf{F(0,0) = 9}}{\bf{.81}}\\{\bf{G(0,0) = 2}}{\bf{.111}}\\{\bf{t = }}{{\bf{t}}_{\bf{0}}}{\bf{ + h = 0}}{\bf{.2}}\\{\bf{T = }}{{\bf{T}}_{\bf{o}}}{\bf{ + h}}\frac{{{\bf{F + G}}}}{{\bf{2}}}{\bf{ = 1}}{\bf{.192}}\end{array}\)

Hence, at \({\bf{x = 2}}{\bf{.0}}\), the solutions are approximately \({\bf{v = 1}}.192\).

The other value is

t

v

t

v

t

v

0.4

1.533

2

2.218

3.6

2.201

0.6

1.719

2.2

2.146

3.8

2.204

0.8

1.841

2.4

2.160

4

2.206

1

1.927

2.6

2.171

4.2

2.208

1.2

1.991

2.8

2.180

4.4

2.209

1.4

2.039

3

2.187

4.6

2.210

1.6

2.077

3.2

2.193

4.8

2.211

1.8

2.105

3.4

2.197

5

2.211

Therefore, when \({\bf{r = 1}}{\bf{.0}}\), the constant solution is \({\bf{v(t) = 4}}{\bf{.905}}\).

When \({\bf{r = }}\,{\bf{1}}{\bf{.5}}\), the constant solution is \({\bf{v(t) = }}2.887\).

When \({\bf{r = }}\,{\bf{2}}{\bf{.0}}\), the constant solution is \({\bf{v(t) = }}2.215\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free