Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Fluid Flow. In the study of the no isothermal flow of a Newtonian fluid between parallel plates, the equation\(\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{x}}^{\bf{2}}}}}{\bf{ + }}{{\bf{x}}^{\bf{2}}}{{\bf{e}}^{\bf{y}}}{\bf{ = 0,x > 0}}\) , was encountered. By a series of substitutions, this equation can be transformed into the first-order equation\(\frac{{{\bf{dv}}}}{{{\bf{du}}}}{\bf{ = u}}\left( {\frac{{\bf{u}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\bf{v}}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\bf{v}}^{\bf{2}}}\). Use the fourth-order Runge–Kutta algorithm to approximate \({\bf{v(3)}}\) if \({\bf{v(u)}}\) satisfies\({\bf{v(}}2{\bf{)}} = 0.1\). For a tolerance of, \({\bf{\varepsilon = 0}}{\bf{.0001}}\) use a stopping procedure based on the relative error.

Short Answer

Expert verified

\({\rm{v}}\left( 3 \right) = 0.241929\)with h = 0.0625

Step by step solution

01

Find the values of \({{\bf{k}}_{\bf{i}}}{\bf{.i = 1,2,3,4}}\)

Using the improved 4th order Runge-Kutta subroutine with tolerance \(\xi {\bf{ = 0}}{\bf{.0001}}\).

Since \({\bf{f(x,y) = u}}\left( {\frac{{\bf{u}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\bf{v}}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\bf{v}}^{\bf{2}}}\) and \({\bf{u = }}{{\bf{u}}_{\bf{0}}}{\bf{ = 0,v = }}{{\bf{v}}_{\bf{o}}}{\bf{ = 0}}{\bf{.1}}\) and h = 1

\(\begin{array}{l}{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = h}}\left[ {{\bf{u}}\left( {\frac{{\bf{u}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\bf{v}}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\bf{v}}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = h}}\left[ {\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}} \right)\left( {\frac{{{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right)}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right)}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = h}}\left[ {\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}} \right)\left( {\frac{{{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right)}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\left( {{\bf{v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right)}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = h}}\left[ {\left( {{\bf{u + h}}} \right)\left( {\frac{{{\bf{u + h}}}}{{\bf{2}}}{\bf{ + 1}}} \right){{\left( {{\bf{v + }}{{\bf{k}}_{\bf{3}}}} \right)}^{\bf{3}}}{\bf{ + }}\left( {{\bf{u + h + }}\frac{{\bf{5}}}{{\bf{2}}}} \right){{\left( {{\bf{v + }}{{\bf{k}}_{{{\bf{3}}_{}}}}} \right)}^{\bf{2}}}} \right]\\{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = 0}}{\bf{.049}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.088356}}\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.120795}}\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.348857}}\end{array}\)

02

Find the values of u and v

\(\begin{array}{c}{\bf{u = }}{{\bf{u}}_{\bf{o}}}{\bf{ + h = 3}}\\{\bf{v = }}{{\bf{v}}_{\bf{o}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{6}}}\left( {{{\bf{k}}_{\bf{1}}}{\bf{ + 2}}{{\bf{k}}_{\bf{2}}}{\bf{ + 2}}{{\bf{k}}_{\bf{3}}}{\bf{ + }}{{\bf{k}}_{\bf{4}}}} \right)\\{\bf{ = 0}}{\bf{.236}}\end{array}\)

Therefore \({\rm{v}}\left( 3 \right) = 0.236\).

This is the solution of IVP.

Now, the relative error is \(\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.236027 - 0}}{\bf{.1}}}}{{{\bf{0}}{\bf{.236027}}}}} \right|{\bf{ = 0}}{\bf{.57632 > 0}}{\bf{.0001}}\)

03

Find the other values

Apply the same procedure for h = 0.5, \({\bf{u = }}2{\bf{,v = }}0.1\).

\(\begin{array}{c}{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = 0}}{\bf{.245}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.033306}}\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.036114}}\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.053410}}\\{\bf{u = 2 + 0}}{\bf{.5 = 2}}{\bf{.5}}\\{\bf{v = 0}}{\bf{.1 + }}\frac{{\bf{1}}}{{\bf{6}}}\left( {{{\bf{k}}_{\bf{1}}}{\bf{ + 2}}{{\bf{k}}_{\bf{2}}}{\bf{ + 2}}{{\bf{k}}_{\bf{3}}}{\bf{ + }}{{\bf{k}}_{\bf{4}}}} \right)\\{\bf{ = 0}}{\bf{.136125}}\end{array}\)

And

\(\begin{array}{c}{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(u,v) = 0}}{\bf{.053419}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.083702}}\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{u + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,v + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.101558}}\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{u + h,v + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.205709}}\\{\bf{u = 2}}{\bf{.5 + 0}}{\bf{.5 = 3}}\\{\bf{v = 0}}{\bf{.1 + }}\frac{{\bf{1}}}{{\bf{6}}}\left( {{{\bf{k}}_{\bf{1}}}{\bf{ + 2}}{{\bf{k}}_{\bf{2}}}{\bf{ + 2}}{{\bf{k}}_{\bf{3}}}{\bf{ + }}{{\bf{k}}_{\bf{4}}}} \right)\\{\bf{ = 0}}{\bf{.241066}}\end{array}\)

Thus, \({\rm{v}}\left( 3 \right) = 0.241066\)

The relative error is \(\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.2}}41066{\bf{ - 0}}.236027}}{{{\bf{0}}{\bf{.2}}41066}}} \right|{\bf{ = 0}}.020903{\bf{ > 0}}{\bf{.0001}}\)

04

Evaluate the other value for h = 0.25, 0.125, 0.0625

Apply the same procedure for other values. The values are

\(\begin{array}{c}{\rm{v}}{\bf{(3) = v(3;0}}{\bf{.25) = 0}}{\bf{.241854}}\\\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.241854 - 0}}{\bf{.241066}}}}{{{\bf{0}}{\bf{.241854}}}}} \right|{\bf{ = 0}}{\bf{.003258 > 0}}{\bf{.0001}}\\{\rm{v}}{\bf{(3) = v(3;0}}{\bf{.125) = 0}}{\bf{.241924}}\\\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.241924 - 0}}{\bf{.241854}}}}{{{\bf{0}}{\bf{.241924}}}}} \right|{\bf{ = 0}}{\bf{.00029 > 0}}{\bf{.0001}}\\{\rm{v}}{\bf{(3) = v(3;0}}{\bf{.0625) = 0}}{\bf{.241929}}\\\xi {\bf{ = }}\left| {\frac{{{\bf{0}}{\bf{.241929 - 0}}{\bf{.241924}}}}{{{\bf{0}}{\bf{.241929}}}}} \right|{\bf{ = 0}}{\bf{.00002 > 0}}{\bf{.0001}}\end{array}\)

Hence,\({\rm{v}}\left( 3 \right) = 0.241929\)

Hence the solution is \({\rm{v}}\left( 3 \right) = 0.241929\)with h = 0.0625

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problem 16, let I = 50 kg-m2 and the retarding torque be N-mIf the motor is turned off with the angular velocity at 225 rad/sec, determine how long it will take for the flywheel to come to rest.

A garage with no heating or cooling has a time constant of 2 hr. If the outside temperature varies as a sine wave with a minimum of 50°Fat2:00a.m.and a maximum of80°Fat2:00p.m., determine the times at which the building reaches its lowest temperature and its highest temperature, assuming the exponential term has died off.

By experimenting with the fourth-order Runge-Kutta subroutine, find the maximum value over the interval \(\left[ {{\bf{1,2}}} \right]\)of the solution to the initial value problem\({\bf{y' = }}\frac{{{\bf{1}}{\bf{.8}}}}{{{{\bf{x}}^{\bf{4}}}}}{\bf{ - }}{{\bf{y}}^{\bf{2}}}{\bf{,y(1) = - 1}}\) . Where does this maximum occur? Give your answers to two decimal places.

Rocket Flight. A model rocket having initial mass mo kg is launched vertically from the ground. The rocket expels gas at a constant rate of a kg/sec and at a constant velocity of b m/sec relative to the rocket. Assume that the magnitude of the gravitational force is proportional to the mass with proportionality constant g. Because the mass is not constant, Newton’s second law leads to the equation (mo - αt) dv/dt - αβ = -g(m0 – αt), where v = dx/dt is the velocity of the rocket, x is its height above the ground, and m0 - αt is the mass of the rocket at t sec after launch. If the initial velocity is zero, solve the above equation to determine the velocity of the rocket and its height above ground for 0≤t<m0/α.

An industrial electromagnet can be modeled as an RLcircuit, while it is being energized with a voltage source. If the inductance is 10 H and the wire windings contain of resistance, how long does it take a constant applied voltage to energize the electromagnet to within 90% of its final value (that is, the current equals 90% of its asymptotic value)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free