Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Taylor method of order 2 can be used to approximate the solution to the initial value problem\({\bf{y' = y,y(0) = 1}}\) , at x= 1. Show that the approximation \({{\bf{y}}_{\bf{n}}}\)obtained by using the Taylor method of order 2 with the step size \(\frac{{\bf{1}}}{{\bf{n}}}\) is given by the formula\({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{n}}}\). The solution to the initial value problem is\({\bf{y = }}{{\bf{e}}^{\bf{x}}}\), so \({{\bf{y}}_{\bf{n}}}\)is an approximation to the constant e.

Short Answer

Expert verified

proved

Step by step solution

01

Find the value of \({{\bf{f}}_{\bf{2}}}{\bf{(x,y)}}\)

Here \({\bf{f(x,y) = y}}\),\({{\bf{x}}_{\bf{o}}}{\bf{ = 0,}}{{\bf{y}}_{\bf{o}}}{\bf{ = 1}}\)

Apply the chain rule.

\({{\bf{f}}_{\bf{2}}}{\bf{(x,y)}} = \frac{{\partial {\bf{f}}}}{{\partial {\bf{x}}}}{\bf{(x,y)}} + \frac{{\partial {\bf{f}}}}{{\partial {\bf{y}}}}{\bf{(x,y)f(x,y)}}\)

Now

\(\begin{array}{l}\frac{{\partial {\bf{f}}}}{{\partial {\bf{x}}}}{\bf{(x,y) = }}0\\\frac{{\partial {\bf{f}}}}{{\partial {\bf{y}}}}{\bf{(x,y) = }}1\end{array}\)

So, the equation is \({{\bf{f}}_{\bf{2}}}{\bf{(x,y) = y}}\)

02

Apply the recursive formulas for order 2

The recursive formula is

\(\begin{array}{l}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{x}}_{\bf{n}}}{\bf{ + h}}\\{{\bf{y}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{y}}_{\bf{n}}}{\bf{ + hf(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{) + }}\frac{{{{\bf{h}}^{^{\bf{2}}}}}}{{{\bf{2!}}}}{{\bf{f}}_{\bf{2}}}{\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{) + }}.....\frac{{{{\bf{h}}^{\bf{p}}}}}{{{\bf{p!}}}}{{\bf{f}}_{\bf{p}}}{\bf{(}}{{\bf{x}}_{\bf{n}}}{\bf{ + }}{{\bf{y}}_{\bf{n}}}{\bf{)}}\end{array}\)

\(\begin{array}{l}{{\bf{x}}_{\bf{1}}}{\bf{ = }}\frac{{\bf{1}}}{{\bf{n}}}\\{{\bf{y}}_{\bf{1}}}{\bf{ = }}\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)\end{array}\)

Apply the same procedure for other values up to n.

\(\begin{array}{c}{{\bf{y}}_{\bf{2}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{2}}}\\{{\bf{y}}_{\bf{3}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{3}}}\\{\bf{.}}\\{\bf{.}}\\{{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{n}}}\\{{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}} \right)^{\bf{n}}}{\bf{n}} \in {\bf{N}}\end{array}\)

Hence it is proved that \({{\bf{y}}_{\bf{n}}}{\bf{ = }}{\left( {{\bf{1 + }}\frac{{\bf{1}}}{{\bf{n}}}{\bf{ + }}\frac{{\bf{1}}}{{{\bf{2}}{{\bf{n}}^{\bf{2}}}}}}

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A cup of hot coffee initially at 95°C cools to 80°C in 5 min while sitting in a room of temperature 21°C. Using just Newton’s law of cooling, determine when the temperature of the coffee will be a nice 50°C.

A rotating flywheel is being turned by a motor that exerts a constant torque T (see Figure 3.10). A retarding torque due to friction is proportional to the angular velocity v. If the moment of inertia of the flywheel, is Iand its initial angular velocity is, find the equation for the angular velocity v as a function of time. [Hint:Use Newton’s second law for rotational motion, that is, moment of inertia * angular acceleration = sum of the torques.]

Use the improved Euler’s method subroutine with step size h= 0.2 to approximate the solution to the initial value problemy'=1x(y2+y),y(1)=1 at the points x= 1.2, 1.4, 1.6, and 1.8. (Thus, input N= 4.) Compare these approximations with those obtained using Euler’s method (see Exercises 1.4, Problem 6, page 28).

Use the fourth-order Runge–Kutta subroutine with h = 0.25 to approximate the solution to the initial value problemy'=1-y,y(0)=0, at x = 1. Compare this approximation with the one obtained in Problem 6 using the Taylor method of order 4.

Use Euler’s method (4) with h= 0.1 to approximate the solution to the initial value problem y'=-20y,y(0)=1, on the interval0x1 (that is, at x= 0, 0.1, . . . , 1.0).Compare your answers with the actual solutiony = e-20x.What went wrong? Next, try the step size h= 0.025 and also h= 0.2. What conclusions can you draw concerning the choice of step size?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free