Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the recursive formulas for the Taylor method of order 2 for the initial value problemy'=xy-y2,y(0)=-1.

Short Answer

Expert verified

yn+1=yn+h(xnyn+yn2)-h22(yn+(xn-2yn)(xnyn-yn2))

Step by step solution

01

Find the value of f2(x,y)

Herey'=xy-y2,y(0)=-1

Apply the chain rule.

f2(x,y)=fx(x,y)+fy(x,y)f(x,y)

Sincef(x,y)=xy-y2

fx(x,y)=yfy(x,y)=x-2y

So, the equation isf2(x,y)=y+(x-2y)(xy-y2)

02

Apply the recursive formulas for order 2

The recursive formula is

xn+1=xn+hyn+1=yn+hf(xn+yn)+h22!f(2xn+yn)+.....hpp!fp(xn+yn)

for order p = 2 then

xn+1=xn+hyn+1=yn+h(xnyn+yn2)-h22(yn+(xn-2yn)(xnyn-yn2))

Where starting points are xo=0,y0=-1.

Hence, the solution is role="math" localid="1664315352749" yn+1=yn+h(xnyn+yn2)-h22(yn+(xn-2yn)(xnyn-yn2))

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Escape Velocity.According to Newton’s law of gravitation, the attractive force between two objects varies inversely as the square of the distances between them. That is,Fg=GM1M2/r2whereM1andM2are the masses of the objects, ris the distance between them (center to center), Fgis the attractive force, and Gis the constant of proportionality. Consider a projectile of

constant mass mbeing fired vertically from Earth (see Figure 3.12). Let trepresent time and v the velocity of the projectile.

  1. Show that the motion of the projectile, under Earth’s gravitational force, is governed by the equationdvdt=-gR2r2, where ris the distance between the projectile and the center of Earth, Ris the radius of Earth, Mis the mass of Earth, andg=GM/R2.
  2. Use the fact that dr /dt = v to obtainvdvdt=-gR2r2
  3. If the projectile leaves Earth’s surface with velocity vo, show thatv2=2gR2r+vo2-2gR
  4. Use the result of part (c) to show that the velocity of the projectile remains positive if and only ifvo2-2gR>0. The velocityve=2gRis called the escape velocityof Earth.
  5. If g= 9.81 m/sec 2and R= 6370 km for Earth, what is Earth’s escape velocity?
  6. If the acceleration due to gravity for the moon is gm= g/6 and the radius of the moon is Rm= 1738 km, what is the escape velocity of the moon?

A solar hot-water-heating system consists of a hot-water tank and a solar panel. The tank is well insulated and has a time constant of 64 hr. The solar panel generates 2000 Btu/hr during the day, and the tank has a heat capacity of 2°Fper thousand Btu. If the water in the tank is initially80°Fand the room temperature outside the tank is, what will be the temperature in the tank after 12 hr of sunlight?

In 1990 the Department of Natural Resources released 1000 splake (a crossbreed of fish) into a lake. In 1997 the population of splake in the lake was estimated to be 3000. Using the Malthusian law for population growth, estimate the population of splake in the lake in the year 2020.

Use the improved Euler’s method subroutine with step size h= 0.1 to approximate the solution to the initial value problemy'=x=y2,y(1)=0, at the points x= 1.1, 1.2, 1.3, 1.4, and 1.5. (Thus, input N= 5.) Compare these approximations with those obtained using Euler’s method (see Exercises 1.4,Problem 5, page 28).

Suppose the snowball in Problem 21 melts so that the rate of change in its diameter is proportional to its surface area. Using the same given data, determine when its diameter will be 2 in. Mathematically speaking, when will the snowball disappear?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free