Chapter 3: Q 3.7-1E (page 139)
Determine the recursive formulas for the Taylor method of order 2 for the initial value problem.
Chapter 3: Q 3.7-1E (page 139)
Determine the recursive formulas for the Taylor method of order 2 for the initial value problem.
All the tools & learning materials you need for study success - in one app.
Get started for freeAn object of mass 100kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of 1/40 times the weight of the object is pushing the object up (weight = mg). If we assume that water resistance exerts a force on the object that is proportional to the velocity of the object, with proportionality constant 10N-sec/m , find the equation of motion of the object. After how many seconds will the velocity of the object be 70 m/sec ?
A shell of mass 2 kg is shot upward with an initial velocity of 200 m/sec. The magnitude of the force on the shell due to air resistance is |v|/20. When will the shell reach its maximum height above the ground? What is the maximum height
In Problem 16, let I = 50 kg-m2 and the retarding torque be N-mIf the motor is turned off with the angular velocity at 225 rad/sec, determine how long it will take for the flywheel to come to rest.
Local versus Global Error. In deriving formula (4) for Euler’s method, a rectangle was used to approximate the area under a curve (see Figure 3.14). With
\({\bf{g(t) = f(t,f(t))}}\), this approximation can be written as \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt}} \approx {\bf{hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \)where \({\bf{h = }}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ - }}{{\bf{x}}_{\bf{n}}}\) .
If the object in Problem 1 has a mass of500 kginstead of 5 kg , when will it strike the ground? [Hint: Here the exponential term is too large to ignore. Use Newton’s method to approximate the time t when the object strikes the ground (see Appendix B)
What do you think about this solution?
We value your feedback to improve our textbook solutions.