Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the recursive formulas for the Taylor method of order 2 for the initial value problemy'=cos(x+y),y(0)=π.

Short Answer

Expert verified

yn+1=yn+hcos(xn+yn)-h22sin(xn+yn)(1+cos(xn+yn))

Step by step solution

01

Find the value of f2(x,y)

Here y'=cos(x+y),y(0)=π

Apply the chain rule.

f2(x,y)=fx(x,y)+fy(x,y)f(x,y)

Since f(x,y)=cos(x+y)

fx(x,y)=-sin(x+y)fy(x,y)=-sin(x+y)

So, the equation is f2(x,y)=-sin(x+y)(1+cos(x+y))

02

Apply the recursive formulas for order 2

The recursive formula is

xn+1=xn+hyn+1=yn+hf(xn+yn)+h22!f2xn+yn+....hpp!fp(xn+yn)

for order p = 2 then

xn+1=xn+hyn+1=yn+hcos(xn+yn)-h22sinxn+yn(1+cos(xn+yn))

Where starting points are xo=0,y0=π.

Hence the solution isrole="math" localid="1664314543589" yn+1=yn+hcos(xn+yn)-h22sin(xn+yn)(1+cos(xn+yn))

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An object of mass 100kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of 1/40 times the weight of the object is pushing the object up (weight = mg). If we assume that water resistance exerts a force on the object that is proportional to the velocity of the object, with proportionality constant 10N-sec/m , find the equation of motion of the object. After how many seconds will the velocity of the object be 70 m/sec ?

A shell of mass 2 kg is shot upward with an initial velocity of 200 m/sec. The magnitude of the force on the shell due to air resistance is |v|/20. When will the shell reach its maximum height above the ground? What is the maximum height

In Problem 16, let I = 50 kg-m2 and the retarding torque be N-mIf the motor is turned off with the angular velocity at 225 rad/sec, determine how long it will take for the flywheel to come to rest.

Local versus Global Error. In deriving formula (4) for Euler’s method, a rectangle was used to approximate the area under a curve (see Figure 3.14). With

\({\bf{g(t) = f(t,f(t))}}\), this approximation can be written as \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt}} \approx {\bf{hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \)where \({\bf{h = }}{{\bf{x}}_{{\bf{n + 1}}}}{\bf{ - }}{{\bf{x}}_{\bf{n}}}\) .

  1. Show that if g has a continuous derivative that is bounded in absolute value by B, then the rectangle approximation has error\(\left( {\bf{O}} \right){{\bf{h}}^{\bf{2}}}\); that is, for some constant M, \(\left| {\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} } \right| \le {\bf{M}}{{\bf{h}}^{\bf{2}}}\).This is called the local truncation error of the scheme. [Hint: Write \(\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {{\bf{g(t)dt - hg(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} {\bf{ = }}\int\limits_{{{\bf{x}}_{\bf{n}}}}^{{{\bf{x}}_{{\bf{n + 1}}}}} {\left[ {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right]{\bf{dt}}} \). Next, using the mean value theorem, show that\(\left| {{\bf{g(t)dt - g(}}{{\bf{x}}_{\bf{n}}}{\bf{)}}} \right| \le {\bf{B}}\left| {{\bf{t - }}{{\bf{x}}_{\bf{n}}}} \right|\) . Then integrate to obtain the error bound\(\left( {\frac{{\bf{B}}}{{\bf{2}}}} \right){{\bf{h}}^{\bf{2}}}\).]
  2. In applying Euler’s method, local truncation errors occur in each step of the process and are propagated throughout the further computations. Show that the sum of the local truncation errors in part (a) that arise after n steps is (O)h. This is the global error, which is the same as the[ss1] [m2] convergence rate of Euler’s method.


If the object in Problem 1 has a mass of500 kginstead of 5 kg , when will it strike the ground? [Hint: Here the exponential term is too large to ignore. Use Newton’s method to approximate the time t when the object strikes the ground (see Appendix B)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free