Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that when Euler’s method is used to approximate the solution of the initial value problem y'=-12y,y(0)=3,at x = 2, then the approximation with step size h is3(1-h2)2h .

Short Answer

Expert verified

Proved

Step by step solution

01

Apply Euler’s formula

Here y'=-12y,y(0)=3

Apply the Euler’s formula

yn+1=yn+hf(xn,yn)

In our case of differential equation our equation is

yn=3(1-h2)n

The interval is

b-an=2-0n=2nn=2h

02

substitute in the Euler’s formula 

Now,

y1=31-h2y2=31-h22...yn=31-h2nyn=31-h22h

Hence it is proved that yn=31-h22h

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 10-8-Fcapacitor (10 nano-farads) is charged to 50Vand then disconnected. One can model the charge leakage of the capacitor with a RC circuit with no voltage source and the resistance of the air between the capacitor plates. On a cold dry day, the resistance of the air gap is5×1013Ω; on a humid day, the resistance is7×106Ω. How long will it take the capacitor voltage to dissipate to half its original value on each day?

In 1990 the Department of Natural Resources released 1000 splake (a crossbreed of fish) into a lake. In 1997 the population of splake in the lake was estimated to be 3000. Using the Malthusian law for population growth, estimate the population of splake in the lake in the year 2020.

In Problems 23–27, assume that the rate of decay of a radioactive substance is proportional to the amount of the substance present. The half-life of a radioactive substance is the time it takes for one-half of the substance to disintegrate. If initially there are 300 g of a radioactive substance and after 5 yr there are 200 g remaining, how much time must elapse before only 10 g remain?

By experimenting with the fourth-order Runge-Kutta subroutine, find the maximum value over the interval \(\left[ {{\bf{1,2}}} \right]\)of the solution to the initial value problem\({\bf{y' = }}\frac{{{\bf{1}}{\bf{.8}}}}{{{{\bf{x}}^{\bf{4}}}}}{\bf{ - }}{{\bf{y}}^{\bf{2}}}{\bf{,y(1) = - 1}}\) . Where does this maximum occur? Give your answers to two decimal places.

If the resistance in the RLcircuit of Figure 3.13(a) is zero, show that the current I (t) is directly proportional to the integral of the applied voltage E(t). Similarly, show that if the resistance in the RCcircuit of Figure 3.13(b) is zero, the current is directly proportional to the derivative of the applied voltage.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free