Chapter 3: Q 3.6-2E (page 129)
Show that when Euler’s method is used to approximate the solution of the initial value problem ,at x = 2, then the approximation with step size h is .
Short Answer
Proved
Chapter 3: Q 3.6-2E (page 129)
Show that when Euler’s method is used to approximate the solution of the initial value problem ,at x = 2, then the approximation with step size h is .
Proved
All the tools & learning materials you need for study success - in one app.
Get started for freeA 10-8-Fcapacitor (10 nano-farads) is charged to 50Vand then disconnected. One can model the charge leakage of the capacitor with a RC circuit with no voltage source and the resistance of the air between the capacitor plates. On a cold dry day, the resistance of the air gap is; on a humid day, the resistance is. How long will it take the capacitor voltage to dissipate to half its original value on each day?
In 1990 the Department of Natural Resources released 1000 splake (a crossbreed of fish) into a lake. In 1997 the population of splake in the lake was estimated to be 3000. Using the Malthusian law for population growth, estimate the population of splake in the lake in the year 2020.
In Problems 23–27, assume that the rate of decay of a radioactive substance is proportional to the amount of the substance present. The half-life of a radioactive substance is the time it takes for one-half of the substance to disintegrate. If initially there are 300 g of a radioactive substance and after 5 yr there are 200 g remaining, how much time must elapse before only 10 g remain?
By experimenting with the fourth-order Runge-Kutta subroutine, find the maximum value over the interval \(\left[ {{\bf{1,2}}} \right]\)of the solution to the initial value problem\({\bf{y' = }}\frac{{{\bf{1}}{\bf{.8}}}}{{{{\bf{x}}^{\bf{4}}}}}{\bf{ - }}{{\bf{y}}^{\bf{2}}}{\bf{,y(1) = - 1}}\) . Where does this maximum occur? Give your answers to two decimal places.
If the resistance in the RLcircuit of Figure 3.13(a) is zero, show that the current I (t) is directly proportional to the integral of the applied voltage E(t). Similarly, show that if the resistance in the RCcircuit of Figure 3.13(b) is zero, the current is directly proportional to the derivative of the applied voltage.
What do you think about this solution?
We value your feedback to improve our textbook solutions.