Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

By experimenting with the improved Euler’s method subroutine, find the maximum value over the interval [0,2]of the solution to the initial value problemy'=sin(x+y),y(0)=2 Where does this maximum value occur? Give answers to two decimal places.

Short Answer

Expert verified

The maximum value of the solution on the given conditions and on the interval is 2.359

Step by step solution

01

Find the equation of approximation value

Herey'=sin(x+y),y(0)=2,

For x = 0,yo=2,M = 200, h = 0.1,interval =.0,2

F=f(x,y)=sin(x+y)G=f(x+h,y+hF)=sin(x+y+0.1(1+sin(x+y))

02

Solve for x and y

Apply initial points x=0,y=2,h=0.1

F(0.2)=0.909297G(0.2)=0.813201

x=(x+h)y=x+h2(F+G)

x=0.1y=2.08615

03

Determine the all-other values

Apply the same procedure for all other values and the values are

(x = 0.77, y = 2.359)

(x = 0.78, y = 2.360)

(x = 0.79, y = 2.360)

(x = 0.79, y = 2.359)

Hence, the maximum value of the solution on the given conditions and on the interval is 2.359.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A swimming pool whose volume is 10,000 gal contains water that is 0.01% chlorine. Starting at t = 0, city water containing 0.001% chlorine is pumped into the pool at a rate of 5 gal/min. The pool water flows out at the same rate. What is the percentage of chlorine in the pool after 1 h? When will the pool water be 0.002% chlorine?

Use the fourth-order Runge–Kutta subroutine with h= 0.1 to approximate the solution to\({\bf{y' = 3cos(y - 5x),y(0) = 0}}\) , at the points x= 0, 0.1, 0.2, . . ., 4.0. Use your answers to make a rough sketch of the solution on [0, 4].

An object of mass 8 kg is given an upward initial velocity of 20 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is -16v , where v is the velocity of the object in m/sec. Determine the equation of motion of the object. If the object is initially 100 m above the ground, determine when the object will strike the ground.

The solution to the initial value problemdydx+yx=x3y2,y(1)=3has a vertical asymptote (“blows up”) at some point in the interval [1,2]By experimenting with the improved Euler’s method subroutine, determine this point to two decimal places.

In Problem 14, suppose we have the additional information that the population of alligators on the grounds of the Kennedy Space Center in 1993 was estimated to be 4100. Use a logistic model to estimate the population ofalligators in the year 2020. What is the predicted limiting population? [Hint: Use the formulas in Problem 12.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free