Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 23–27, assume that the rate of decay of a radioactive substance is proportional to the amount of the substance present. The half-life of a radioactive substance is the time it takes for one-half of the substance to disintegrate. Carbon dating is often used to determine the age of a fossil. For example, a humanoid skull was found in a cave in South Africa along with the remains of a campfire. Archaeologists believe the age of the skull to be the same age as the campfire. It is determined that only 2% of the original amount of carbon-14 remains in the burnt wood of the campfire. Estimate the age of the skull if the half-life of carbon-14 is about 5600 years.

Short Answer

Expert verified

The estimated age of the skull is 31,606 years.

Step by step solution

01

Analyzing the given statement

Given that the rate of decay of a radioactive substance is directly proportional to the amount of the substance present. Let the present amount of the radioactive substance be N.

Therefore,dNdtN

Given that there is only 2% of the original amount of carbon-14 remains in the burnt wood of the campfire. We have to estimate theage of the skull if the half-life of carbon-14 is about 5600 years.

02

Determining the formula with the help of the given proportionality relation, to solve the question

Given,

dNdtNdNdt=-λN

where, λis the constant of proportionality.

dNN=-λdNN=-λdtlnN=-λt+lnN0

where, N0is an arbitrary constant.

lnN-lnN0=-λtlnNN0=-λtNN0=e-λtN=N0e-λt······1

One will use this formula to solve the question.

03

Determining the value of λ

The half-life of carbon-14 is given as 5600 years. The formula for finding the half-life is,

t12=ln2λ

Here,t12=5600years

Thus,5600=ln2λ

λ=ln25600······2 .

One will use this value of λin step4 to find the estimated age of the skull.

04

Finding the estimated age of the skull

Let theoriginal amount of carbon-14be N0 and let the amount of remaining carbon-14 in the burnt wood of the campfire be N, which is given as 2% of the original amount,

i.e., N = 0.02 N0

Using the equation (1),

0.02N0=N0e-λt0.02=e-λteλt=1002eλt=50λt=ln50t=ln50λ

Now, using the value of λfrom equation (2),

t=ln50ln2·5600t=31606years

Hence, the estimated age of the skull is 31,606 years.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

By experimenting with the improved Euler’s method subroutine, find the maximum value over the interval [0,2]of the solution to the initial value problemy'=sin(x+y),y(0)=2 Where does this maximum value occur? Give answers to two decimal places.

Use the improved Euler’s method subroutine with step size h = 0.2 to approximate the solution toat the points x = 0, 0.2, 0.4, …., 2.0. Use your answers to make a rough sketch of the solution on [0, 2].

An object of mass 5 kg is given an initial downward velocity of 50 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is -10v, where v is the velocity of the object in m/sec. Determine the equation of motion of the object. If the object is initially 500 m above the ground, determine when the object will strike the ground.

An object of mass 2 kg is released from rest from a platform 30 m above the water and allowed to fall under the influence of gravity. After the object strikes the water, it begins to sink with gravity pulling down and a buoyancy force pushing up. Assume that the force of gravity is constant, no change in momentum occurs on impact with the water, the buoyancy force is 1/2 the weight (weight = mg), and the force due to air resistance or water resistance is proportional to the velocity, with proportionality constant b1= 10 N-sec/m in the air and b2= 100 N-sec/m in the water. Find the equation of motion of the object. What is the velocity of the object 1 min after it is released?

Building Temperature.In Section 3.3 we modeled the temperature inside a building by the initial value problem (13)\(\frac{{{\bf{dT}}}}{{{\bf{dt}}}}{\bf{ = K}}\,\,\left[ {{\bf{M}}\,{\bf{(t) - T}}\,{\bf{(t)}}} \right]{\bf{ + H}}\,{\bf{(t) + U}}\,{\bf{(t),}}\,\,{\bf{T}}\,{\bf{(}}{{\bf{t}}_{\bf{o}}}{\bf{) = }}{{\bf{T}}_{\bf{o}}}\) , where M is the temperature outside the building, T is the temperature inside the building, H is the additional heating rate, U is the furnace heating or air conditioner cooling rate, K is a positive constant, and \({{\bf{T}}_{\bf{o}}}\) is the initial temperature at time \({{\bf{t}}_{\bf{o}}}\) . In a typical model, \({{\bf{t}}_{\bf{o}}}{\bf{ = 0}}\) (midnight),\({{\bf{T}}_{\bf{o}}}{\bf{ = 6}}{{\bf{5}}^{\bf{o}}}\), \({\bf{H}}\left( {\bf{t}} \right){\bf{ = 0}}{\bf{.1}}\), \({\bf{U(t) = 1}}{\bf{.5}}\left[ {{\bf{70 - T(t)}}} \right]\)and \({\bf{M(t) = 75 - 20cos}}\frac{{{\bf{\pi t}}}}{{{\bf{12}}}}\) . The constant K is usually between\(\frac{{\bf{1}}}{{\bf{4}}}{\bf{and}}\frac{{\bf{1}}}{{\bf{2}}}\), depending on such things as insulation. To study the effect of insulating this building, consider the typical building described above and use the improved Euler’s method subroutine with\({\bf{h = }}\frac{{\bf{2}}}{{\bf{3}}}\) to approximate the solution to (13) on the interval \(0 \le {\bf{t}} \le 24\) (1 day) for \({\bf{k = 0}}{\bf{.2,}}\,{\bf{0}}{\bf{.4}}\), and 0.6.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free