Chapter 7: Q9E (page 397)
Show that if\(L\{ g\} (s) = {\left[ {(s + \alpha )\left( {1 - {e^{ - Ts}}} \right)} \right]^{ - 1}}\), where\(T > 0\)is fixed, then
\(\begin{array}{c}g(t) = {e^{ - \alpha t}} + {e^{ - \alpha (t - T)}}u(t - T)\\ + {e^{ - \alpha (t - 2T)}}u(t - 2T)\\ + {e^{ - \alpha (t - 3T)}}u(t - 3T) + L\end{array}\)
[Hint: Use the fact that\(\left. {1 + x + {x^2} + L = 1/(1 - x).} \right]\)
Short Answer
By using the geometric series in the given function, it is showed that if\(\mathcal{L}\{ g\} (s) = {\left[ {(s + \alpha )\left( {1 - {e^{ - {\gamma _x}}}} \right)} \right]^{ - 1}}\) , where\(T > 0\)is fixed, then
\(\begin{array}{c}g(t) = {e^{ - \alpha t}} + {e^{ - \alpha (t - T)}}u(t - T)\\ + {e^{ - \alpha (t - 2T)}}u(t - 2T)\\ + {e^{ - \alpha (t - 3T)}}u(t - 3T) + \cdots \end{array}\)