Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the inverse Laplace transform of the given function.


2s+16s2+4s+13.

Short Answer

Expert verified

The inverse laplace transform of the given function is2e-2tcos3t+4e-2tsin3t.

Step by step solution

01

Determining the inverse laplace transform

  • For a given transfer function H, the Inverse Laplace Transform takes the output Y(s) and determines what X(s) it is in terms of (s).
  • Consider a function F(s), if there is a function f(t) that is continuous on[0,) and satisfiesL{f}=F then we say that f(t) is the inverse Laplace transform of F(s) and employ the notation
  • f=L-1{F}
  • L-1n!(s-a)n+1=eattn,n=1,2,
02

Find inverse laplace transform for the given function

The given function is 2s+16s2+4s+13.

Simplify 2s+16s2+4s+13as follows:

2s+16s2+4s+4+9=2(s+8)(s2+4s+4)+9=2(s+2)+12(s+2)2+(3)2=2(s+2)(s+2)2+(3)2+12(s+2)2+(3)2

Find the inverse laplace transform of 2s+16s2+4s+4+9=2(s+2)(s+2)2+(3)2+12(s+2)2+(3)2using L-1b(s-a)2+(b)2=eatsinbtand L-1b(s-a)2+(b)2=eatcosbtas:

L-12s+16s2+4s+4+9=L-12(s+2)(s+2)2+(3)2+12(s+2)2+(3)2=2L-1s+2(s+2)2+(3)2+4L-13(s+2)2+(3)2=2e-2tcos3t+4e-2tsin3t

Therefore, the inverse laplace transform of the given function is 2e-2tcos3t+4e-2tsin3t.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free