Chapter 7: Q 19E (page 365) URL copied to clipboard! Now share some education! In Problems 1-20, determine the Laplace transform of the given function using Table 7.1 on page 356 and the properties of the transform given in Table 7.2. [Hint: In Problems 12-20, use an appropriate trigonometric identity.]cosntsinmt,m≠n Short Answer Expert verified The Laplace transform of form≠nisms2-n2+m2s2+(n-m)2s2+(n+m)2. Step by step solution 01 Definition of Laplace transform The integral transform of a given derivative function with real variable t into a complex function with variable s is known as the Laplace transform.Let f(t) be supplied for t(0), and assume that the function meets certain constraints that will be presented subsequently.The Laplace transform formula defines the Laplace transform of f(t), which is indicated by Lftor F(s). 02 Determine the Laplace transform for the given equation Given that cosntsinmt,m≠n,Find the Laplace transform of cosntsinmtfor m≠nusing cosacosb=12[cos(a-b)+cos(a+b)], L{af(x)±bg(x)}=aL{f}±bL{g(t)}, L{cosbt}=ss2+b2, ac±bd=da±cbcdand (a±b)2=a2±2ab+b2as:L{cosntsinmt}=L12[sin(nt+mt)-sin(nt-mt)]=12L{sin(n+m)t}-L{sin(n-m)t}=12n+ms2+(n+m)2-n-ms2+(n-m)2=12s2+(n-m)2·(n+m)-s2+(n+m)2·(n-m)s2+(n-m)2s2+(n+m)2Simplify the equation as:L{cosntsinmt}=12s2(n+m)+(n-m)2(n+m)-s2(n-m)-(n+m)2(n-m)s2+(n-m)2s2+(n+m)2=12s2(n+m)-s2(n-m)⏜s2commonn-m2n+m-n+m2n-m⏜n+mn-mcommons2+(n-m)2s2+(n+m)2=12s2{(n+m)-(n-m)}+(n-m)(n+m){(n-m)-(n+m)}s2+(n-m)2s2+(n+m)2=12s2{n+m-n+m}+n2-m2{n-m-n-m}s2+(n-m)2s2+(n+m)2Further simplifying the equation as follows:L{cosntsinmt}=122ms2-n2-m2s2+(n-m)2s2+(n+m)2=ms2-n2+m2s2+(n-m)2s2+(n+m)2Hence, the Laplace transform isms2-n2+m2s2+(n-m)2s2+(n+m)2. Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!