Chapter 7: 32E (page 350) URL copied to clipboard! Now share some education! In Problems 29 - 32, use the method of Laplace transforms to find a general solution to the given differential equation by assuming y(0)=aandy'(0)=ba and b are arbitrary constants.y''-5y'+6y=-6te2t Short Answer Expert verified The General solution to the given differential equation isyt=3a-b+6e2t+6te2t+3t2e2t+b-2a-6e3t Step by step solution 01 Define Laplace Transform The Laplace transform is a strong integral transform used in mathematics to convert a function from the time domain to the s-domain.In some circumstances, the Laplace transform can be utilized to solve linear differential equations with given beginning conditions.Fs=∫0∞f(t)e-stt' 02 Apply Laplace transform: Applying the Laplace transform and using its linearity we getLy''-5y'+6y=-6te2tLy''-5Ly'+6Ly=-6(s-2)2Solve for the transform as:s2Y(s)-sy0-y0-5sYs-y0+6Ys=-6s-22s2Y(s)-as-b-5sYs-5a+6Ys=-6(s-2)2s2Ys-5sYs+6Ys=-6s-22+as+b-5as2-5s+6Ys=as3+b-9as2+24a-4bs+4b-20a-6s-22Solve further as:Ys=as3+b-9as2+24a-4bs+4b-20a-6s-22s2-5s+6Using partial fractions solve as:as3+b-9as2+24a-4bs+4b-20a-6s-22s2-5s+6=as3+b-9as2+24a-4bs+4b-20a-6s-23s-3=As-2+Bs-22+Cs-23+Ds-3Resolve for the partial fraction as:as3+b-9as2+24a-4bs+4b-20a-6=As-22s-3+Bs-2s-3+Cs-3+Ds-23=A+Ds3+B-7A-6Ds2+16A-5B+C+12Ds-12A+6B-3C-8DSolve for the system of equation as:A+D=aB-7A-6D=b-9a16A-5B+C+12D=24a-4b-12A+6B-3C-8D=4b-20a-6⇒A=3a-b6B=6C=6D=b-2a-6 03 Use Inverse Laplace transform: Y(s)=3a-b+6s-2+6(s-2)2+6(s-2)3+b-2a-6s-3Using the inverse Laplace transform, Obtain the solution of given differential equation,yt=L-13a-b+6s-2+6s-22+6s-23+b-2a-6s-3t=3a-b+6L1s-2+6L1(s-2)2+3L2(s-2)3+(b-2a-6)L1s-3=3a-b+6e2t+6te2t+3t2e2t+b-2a-6e3tTherefore, the solution for the differential equation isyt=3a-b+6e2t+6te2t+3t2e2t+b-2a-6e3t Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!