Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 1 and 2, use the definition of the Laplace transform to determineL{f}.

f(t)={3,0t26-t,2<t

Short Answer

Expert verified

L{f(t)}(s)=3s+e-2ss-e-2ss2

Step by step solution

01

Step 1:Given Information

The given function isf(t)={3,0t26-t,2<t

02

Determining the L{f}

Using the Laplace transform definition, we get

L{f(t)}=0e-stf(t)dt=023estdt+2(6t)estdt=3[ests]02+limN2N(6t)estdt=3s(1e2s)+limN2N(6t)estdt

Letrole="math" localid="1664044470656" 6t=uestdt=dvdt=duv=estsin second integral, then we can write as:

L{f(t)}=3s(1e2s)+limN((6t)ests2N2Nestsdt)=3s(1e2s)+limN4e2ss(6N)esNs+ests22N=3s(1e2s)+limN4e2ss(6N)esNs+esNs2e2ss2=3s(1e2s)+limN4e2sslimN(6N)esNs+limNesNs2limN4e2ss2

Simplify further as:

L{f(t)}=3s(1e2s)+4e2ss0+04e2ss2=3s(1e2s)+4e2ss4e2ss2=3s+e2sse2ss2

03

Determining the Result

Thus, the required Laplace transform isL{f(t)}(s)=3s+e-2ss-e-2ss2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free