Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 3–8, determine whether the given function is a solution to the given differential equation.

x=2cost-3sint,x''+x=0

Short Answer

Expert verified

The given function is a solution to the given differential equation.

Step by step solution

01

Differentiating the given equation w.r.t. (with respect to) x

Firstly, we will differentiate x=2cost-3sintwith respect to t,

x'=-2sint-3cost

Again, differentiating with respect to t,

x''=-2cost-3-sintx''=-2cost+3sint

02

Simplification

Putting the values from step 1 in the L.H.S. (Left-hand side) of the given differential equation,

x''+x=-2cost+3sint+2cost-3sintx''+x=0

which is the same as the R.HS. (Right-hand side) of the given differential equation.

Hence, x=2cost-3sintis a solution to the differential equation x''+x=0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Implicit Function Theorem. Let G(x,y)have continuous first partial derivatives in the rectangleR={x,y:a<x<b,c<y<d}containing the pointlocalid="1664009358887" (x0,y0). IfG(x0,y0)=0 and the partial derivativeGy(x0,y0)0, then there exists a differentiable function y=ϕ(x), defined in some intervalI=(x0-δ,y0+δ),that satisfies G for allforG(x,ϕx)all xI.

The implicit function theorem gives conditions under which the relationshipG(x,y)=0 implicitly defines yas a function of x. Use the implicit function theorem to show that the relationshipx+y+exy=0 given in Example 4, defines y implicitly as a function of x near the point(0,-1).

In problems 1-4 Use Euler’s method to approximate the solution to the given initial value problem at the points x=0.1,0.2,0.3,0.4, and 0.5, using steps of size 0.1h=0.1.

dydx=xy,y(0)=-1

In Problems 9-13, determine whether the given relation is an implicit solution to the given differential equation. Assume that the relationship implicitly defines y as a function of x and use implicit differentiation.

y-logey=x2+1,dydx=2xyy-1

Consider the differential equation dydx=x+siny

⦁ A solution curve passes through the point (1,π2). What is its slope at this point?

⦁ Argue that every solution curve is increasing for x>1.

⦁ Show that the second derivative of every solution satisfies d2ydx2=1+xcosy+12sin2y.

⦁ A solution curve passes through (0,0). Prove that this curve has a relative minimum at (0,0).

In Problems 23-28, determine whether Theorem 1 implies that the given initial value problem has a unique solution.

3xdxdt+4t=0,x(2)=-π

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free