Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 23-28, determine whether Theorem 1 implies that the given initial value problem has a unique solution.

dydx=y4-x4,y(0)=7

Short Answer

Expert verified

The hypotheses of Theorem 1 are satisfied.

The theorem shows that the given initial value problem has a unique solution.

Step by step solution

01

Finding the partial derivative of the given relation with respect to y

Here, fx,y=y4-x4andfy=4y3.

02

Determining whether Theorem 1 implies the existence of a unique solution or not.

Now from Step 1, we find that both of the functionsfx,yandfyare continuous in any rectangle containing the point0,7, so the hypotheses of the Theorem are satisfied. It then follows from the theorem that the given initial value problem has a unique solution in an interval aboutx=0of the form0-δ,0+δ, whereδis some positive number.

Hence, Theorem 1 implies that the given initial value problem has a unique solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Mixing.Suppose a brine containing 0.2 kg of salt per liter runs into a tank initially filled with 500 L of water containing 5 kg of salt. The brine enters the tank at a rate of 5 L/min. The mixture, kept uniform by stirring, is flowing out at the rate of 5 L/min (see Figure 2.6).

(a)Find the concentration, in kilograms per liter, of salt in the tank after 10 min. [Hint:LetAdenote the number of kilograms of salt in the tank attminutes after the process begins and use the fact that

rate of increase inA=rate of input- rate of exit.

A further discussion of mixing problems is given in Section 3.2.]

(b)After 10 min, a leak develops in the tank and an additional liter per minute of mixture flows out of the tank (see Figure 2.7). What will be the concentration, in kilograms per liter, of salt in the tank 20 min after the leak develops? [Hint:Use the method discussed in Problems 31 and 32.]

Decide whether the statement made is True or False. The relation x2+y3-ey=1 is an implicit solution to dydx=ey-2x3y2.

In Problems 14–24, you will need a computer and a programmed version of the vectorized classical fourth-order Runge–Kutta algorithm. (At the instructor’s discretion, other algorithms may be used.)†

Using the vectorized Runge–Kutta algorithm with h = 0.5, approximate the solution to the initial value3t2y''-5ty'+5y=0;y(1)=0,y'(1)=23 problemat t = 8.

Compare this approximation to the actual solution y(t)=t53-t.

In problems 1-4 Use Euler’s method to approximate the solution to the given initial value problem at the points x=0.1,0.2,0.3,0.4, and 0.5, using steps of size 0.1h=0.1.

dydx=xy,y(0)=-1

Nonlinear Spring.The Duffing equationy''+y+ry3=0 where ris a constant is a model for the vibrations of amass attached to a nonlinearspring. For this model, does the period of vibration vary as the parameter ris varied?

Does the period vary as the initial conditions are varied? [Hint:Use the vectorized Runge–Kutta algorithm with h= 0.1 to approximate the solutions for r= 1 and 2,

with initial conditionsy(0)=a,y'(0)=0 for a = 1, 2, and 3.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free