Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chemical Reactions.The reaction between nitrous oxide and oxygen to form nitrogen dioxide is given by the balanced chemical equation\({\bf{2NO + }}{{\bf{O}}_{\bf{2}}}{\bf{ = 2N}}{{\bf{O}}_{\bf{2}}}\). At high temperatures the dependence of the rate of this reaction on the concentrations of NO,\({{\bf{O}}_{\bf{2}}}\), and \({\bf{N}}{{\bf{O}}_{\bf{2}}}\) is complicated. However, at \({\bf{2}}{{\bf{5}}^{\bf{o}}}\)C the rate at which NO2 is formed obeys the law of mass action and is given by the rate equation\(\frac{{{\bf{dx}}}}{{{\bf{dt}}}}{\bf{ = k(\alpha - x}}{{\bf{)}}^{\bf{2}}}\left( {{\bf{\beta - }}\frac{{\bf{x}}}{{\bf{2}}}} \right)\), where \({{\bf{x}}_{\bf{1}}}{{\bf{t}}_{\bf{2}}}\) denotes the concentration of \({\bf{N}}{{\bf{o}}_{\bf{2}}}\) at time t, kis the rate constant, a is the initial concentration of NO, and b is the initial concentration of \({{\bf{O}}_{\bf{2}}}\). At \({\bf{2}}{{\bf{5}}^{\bf{o}}}\)C, the constant kis \({\bf{7}}{\bf{.13 \times 1}}{{\bf{0}}^{\bf{3}}}{{\bf{(litre)}}^{\bf{2}}}{\bf{/(mole}}{{\bf{)}}^{\bf{2}}}\) (second).Let \({\bf{\alpha = 0}}{\bf{.0010}}\) mole/L, \({\bf{\beta = 0}}{\bf{.0041}}\) mole/L, and (\({\bf{x(0) = 0}}\) mole>L. Use the fourth-order Runge–Kutta algorithm to approximate \({\bf{x}}\left( {{\bf{10}}} \right)\). For a tolerance of\({\bf{\varepsilon = 0}}{\bf{.000001}}\), use a stopping procedure based on the relative error.

Short Answer

Expert verified

The approximation value is \(\phi \left( {10} \right) = 0.000223596\).

Step by step solution

01

Important hint.

To get the solution use the concept of Runge-Kutta algorithm.

02

Find the values for \({\bf{t}}\) and \({\bf{x}}\).

Using the improved 4th order Runge-Kutta subroutine with tolerance \(\varepsilon = 0.000001\).

Since \(f\left( {t,x} \right) = 7.13 \times {10^3}{\left( {0.0010 - x} \right)^2}\left( {0.0041 - \frac{x}{2}} \right)\)

and \(t = {t_0} = 0,x = {x_o} = 0\) and\(h = 10\)

\(\begin{array}{c}{k_1} = hf\left( {t,x} \right)\\ = h\left[ {7.13 \times {{10}^3}{{\left( {0.0010 - x} \right)}^2}\left( {0.0041 - \frac{x}{2}} \right)} \right]\end{array}\)

\(\begin{array}{c}{k_2} = hf\left( {t + \frac{h}{2},x + \frac{{{k_1}}}{2}} \right)\\ = h\left[ {7.13 \times {{10}^3}{{\left( {0.0010 - x - \frac{{{k_1}}}{1}} \right)}^2}\left( {0.0041 - \frac{{x + \frac{{{k_1}}}{2}}}{2}} \right)} \right]\end{array}\)

\(\begin{array}{c}{k_3} = hf\left( {t + \frac{h}{2},x + \frac{{{k_2}}}{2}} \right)\\ = h\left[ {7.13 \times {{10}^3}{{\left( {0.0010 - x - \frac{{{k_2}}}{1}} \right)}^2}\left( {0.0041 - \frac{{x + \frac{{{k_2}}}{2}}}{2}} \right)} \right]\end{array}\)

\(\begin{array}{c}{k_4} = hf\left( {t + h,x + {k_3}} \right)\\ = h\left[ {7.13 \times {{10}^3}{{(0.0010 - x - h)}^2}\left( {0.0041 - \frac{{x + {k_3}}}{2}} \right)} \right]\end{array}\)

\(\begin{array}{c}{k_1} = h\left( {t,x} \right)\\ = 0.00029233\end{array}\)

\(\begin{array}{c}{k_2} = hf\left( {t + \frac{h}{2},x + \frac{{{k_1}}}{2}} \right)\\ = 0.00020932\end{array}\)

\(\begin{array}{c}{k_3} = hf\left( {t + \frac{h}{2},x + \frac{{{k_2}}}{2}} \right)\\ = 0.000231351\end{array}\)

\(\begin{array}{c}{k_4} = hf\left( {t + h,x + {k_3}} \right)\\ = 0.000167842\end{array}\)

03

Find the values for \({\bf{t}}\) and \({\bf{x}}\).

\(\begin{array}{c}t = {t_o} + h\\t = 10\\x = {x_o} + \frac{1}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right)\\ = 0.000223585\end{array}\)

Therefore, \(\phi \left( {10} \right) = 0.000223585\).

This the solution of IVP.

Now, the relative error is

\(\begin{array}{c}\varepsilon = \left| {\frac{{0.0002235885 - 0}}{{0.0002235885}}} \right|\\ = 1 > 0.000001\end{array}\)

04

Find the other values.

Apply the same procedure for \(h = 5\),

\(t = 0,x = 0\).

\(\begin{array}{c}{k_1} = h\left( {t,x} \right)\\ = 0.000146165\end{array}\)

\(\begin{array}{c}{k_2} = hf\left( {t + \frac{h}{2},x + \frac{{{k_1}}}{2}} \right)\\ = 0.000124462\end{array}\)

\(\begin{array}{c}{k_3} = hf\left( {t + \frac{h}{2},x + \frac{{{k_2}}}{2}} \right)\\ = 0.000127564\end{array}\)

\(\begin{array}{c}{k_4} = hf\left( {t + h,x + {k_3}} \right)\\ = 0.000109522\end{array}\)

\(\begin{array}{c}t = 0 + 5 = 5\\x = 0 + \frac{1}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right)\\ = 0.000126623\end{array}\)

\(\begin{array}{c}{k_1} = h\left( {t,x} \right)\\ = 0.000109771\end{array}\)

\(\begin{array}{c}{k_2} = hf\left( {t + \frac{h}{2},x + \frac{{{k_1}}}{2}} \right)\\ = 0.0000957526\end{array}\)

\(\begin{array}{c}{k_3} = hf\left( {t + \frac{h}{2},x + \frac{{{k_2}}}{2}} \right)\\ = 0.0000974847\end{array}\)

\(\begin{array}{c}{k_4} = hf\left( {t + h,x + {k_3}} \right)\\ = 0.0000855878\end{array}\)

\(\begin{array}{c}t = 5 + 5 = 10\\x = 0 + \frac{1}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right)\\ = 0.000223595\end{array}\)

Thus the values is, \(\phi \left( {10} \right) = 0.000223595\)[ss1] [m2]

The relative error is

\(\begin{array}{c}\varepsilon = \left| {\frac{{0.000223595 - 0.000223585}}{{0.000223595}}} \right|\\ = 0.0000447237 > 0.0000001\end{array}\)

[ss1]Incomplete sentance

[m2]done

05

Evaluate the other values.

Apply the same procedure for other values. The values are

\(\begin{array}{c}\phi \left( {10} \right) = v\left( {10;2.5} \right)\\ = 0.000223596\\\varepsilon = \left| {\frac{{0.000223596 - 0.00023595}}{{0.000223596}}} \right|\\ = 0.00000447235 > 0.000001\\\phi \left( {10} \right) = v\left( {10;1.25} \right)\\ = 0.000223596\\\varepsilon = \left| {\frac{{0.000223596 - 0.000223596}}{{0.000223596}}} \right|\\ = 0 < 0.0001\end{array}\)

Hence, the value is \(\phi \left( {10} \right) = 0.000223596\).[ss1] [m2]

[ss1]Incomplete sentence

[m2]done

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free