Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If Euler’s method with step size\[{\bf{h = }}\frac{{\bf{1}}}{{\bf{n}}}\], where nis a positiveinteger, is used to approximate the solution to the initial value problem\[\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ + y = 0,y(0) = 1}}\] what formula (expressed as a function of n) do you obtain for the approximation of y (1 ) ? What is the exact value of y (1 )?

Short Answer

Expert verified

\[{y_0} = {\left( {1 - \frac{1}{n}} \right)^n}\], \[{\bf{y}}\left( {\bf{1}} \right) = {{\bf{e}}^{{\bf{ - 1}}}} \approx 0.3679\]

Step by step solution

01

Finding the value of f (x)

Here,

\[\begin{array}{c}\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ = - y}}\\\frac{{\bf{1}}}{{\bf{y}}}\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ = - 1}}\\\int {\frac{{\bf{1}}}{{\bf{y}}}\frac{{{\bf{dy}}}}{{{\bf{dx}}}}{\bf{ = }}\int {{\bf{ - dx}}} } \\{\bf{ln}}\;{\bf{u = ln}}\;{\bf{y = - x + c}}\end{array}\]

So,\[{\bf{y = }}{{\bf{e}}^{{\bf{( - x + c)}}}}\]

By using the initial conditions \[{\bf{y(0) = 1,}}\;{\bf{c = 0}}\]then

\[{\bf{y(x) = }}{{\bf{e}}^{{\bf{ - x}}}}\]

02

Using Euler’s method.

f(x,y)=-y

\[\begin{array}{c}{{\bf{y}}_{{\bf{n + 1}}}}{\bf{ = }}{{\bf{y}}_{\bf{n}}}{\bf{ + h}}\;{\bf{f(x,y)}}\\{\bf{ = }}{{\bf{y}}_{\bf{n}}}{\bf{ - }}\frac{{\bf{1}}}{{\bf{n}}}{{\bf{y}}_{\bf{n}}}\\{{\bf{y}}_{\bf{1}}}{\bf{ = }}\frac{{{\bf{n - 1}}}}{{\bf{n}}}\\{{\bf{y}}_{\bf{2}}}{\bf{ = }}{\left( {\frac{{{\bf{n - 1}}}}{{\bf{n}}}} \right)^{\bf{2}}}\\{\bf{.}}\\{\bf{.}}\\{\bf{.}}\\{{\bf{y}}_{\bf{k}}}{\bf{ = }}{\left( {\frac{{{\bf{n - 1}}}}{{\bf{n}}}} \right)^{\bf{k}}}{\bf{.}}{{\bf{y}}_{\bf{o}}}\end{array}\]

\[\begin{array}{l}{\bf{y(1) = }}{\left( {\frac{{{\bf{n - 1}}}}{{\bf{n}}}} \right)^{\bf{n}}}\\{y_0} = {\left( {1 - \frac{1}{n}} \right)^n}\end{array}\]

03

Finding the values for another n

Comparing the \[{\bf{y(1) = }}{{\bf{e}}^{{\bf{ - 1}}}}{\bf{ = 0}}{\bf{.3678}}\]as n increases

\[\begin{array}{*{20}{l}}{For{\rm{ }}n = 10,{\rm{ }}then{\rm{ }}0.3486,{\rm{ }}error = 0.0192}\\{For{\rm{ }}n = 100,{\rm{ }}then{\rm{ }}0.36603,{\rm{ }}error = 0.0018}\\{For{\rm{ }}n = 500,{\rm{ }}then{\rm{ }}0.3675,{\rm{ }}error{\rm{ }} = 0.0004}\\{For{\rm{ }}n = 1000,{\rm{ }}then{\rm{ }}0.3676,{\rm{ }}error = 0.002}\\{For{\rm{ }}n = 5000,{\rm{ }}then{\rm{ }}0.36784,{\rm{ }}error = 0.000037}\end{array}\]

Therefore the solution is\[{y_0} = {\left( {1 - \frac{1}{n}} \right)^n}\], \[{\bf{y}}\left( {\bf{1}} \right) = {{\bf{e}}^{{\bf{ - 1}}}} \approx 0.3679\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use Euler’s method with step size h = 0.1 to approximate the solution to the initial value problem

y'=x-y2, y (1) = 0 at the points x=1.1,1.2,1.3,1.4and1.5.

Competing Species. Let pi(t) denote, respectively, the populations of three competing species Si,i=1,2,3.Suppose these species have the same growth rates, and the maximum population that the habitat can support is the same for each species. (We assume it to be one unit.) Also, suppose the competitive advantage thatS1 has overS2 is the same as that ofS2 overS3 and over. This situation is modeled by the system

p'1=p1(1-p1-ap2-bp3)p'2=p2(1-bp1-p2-ap3)p'3=p3(1-ap1-bp2-p3)

where a and b are positive constants. To demonstrate the population dynamics of this system when a = b = 0.5, use the Runge–Kutta algorithm for systems with h = 0.1 to approximate the populations over the time interval [0, 10] under each of the following initial conditions:

(a)p1(0)=1.0,p2=0.1,p3=0.1(b)p1(0)=0.1,p2=1.0,p3=0.1(c)p1(0)=0.1,p2=0.1,p3=1.0

In Problems 23-28, determine whether Theorem 1 implies that the given initial value problem has a unique solution.

ydydx=x,y(1)=0

Implicit Function Theorem. Let G(x,y)have continuous first partial derivatives in the rectangleR={x,y:a<x<b,c<y<d}containing the pointlocalid="1664009358887" (x0,y0). IfG(x0,y0)=0 and the partial derivativeGy(x0,y0)0, then there exists a differentiable function y=ϕ(x), defined in some intervalI=(x0-δ,y0+δ),that satisfies G for allforG(x,ϕx)all xI.

The implicit function theorem gives conditions under which the relationshipG(x,y)=0 implicitly defines yas a function of x. Use the implicit function theorem to show that the relationshipx+y+exy=0 given in Example 4, defines y implicitly as a function of x near the point(0,-1).

In Problems 23-28, determine whether Theorem 1 implies that the given initial value problem has a unique solution.

dxdt+cosx=sint,x(π)=0

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free