Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find all the critical points of the system

dxdt=x2-1dydt=xy

and the solution curves for the related phase plane differential equation. Thereby proving that two trajectories lie on semicircles. What are the endpoints of the semicircles?

Short Answer

Expert verified

The result is

fory>0,x>1,y=ecx2-1fory>0,x<1,y=ec1-x2fory<0,x>1,y=-ecx2-1fory<0,x<1,y=-ec1-x2

And the end points are (-1,0) (1,0).

Step by step solution

01

Find critical points

For a critical point put the system equal to 0.

x2-1=0xy=0x2=1x=±1y=0

02

Find the value of y

Now,

dydx=xyx2-11ydy=x2x2-1lny=12lnt+cbysubtitutionlny=lnt12+cy=ect12y=ecx2-1

03

Prove results that endpoints are semicircles.

Now there are two cases when y > 0 and y < 0 for both cases x2-1<0andx2-1>0then x<1andx>1

fory>0,x>1,y=ecx2-1fory>0,x<1,y=ec1-x2fory<0,x>1,y=-ecx2-1fory<0,x<1,y=-ec1-x2

The trajectories that possibly lie on semicircles. If we square the equation then

y2=e2c(1-x2)

This will be the equation of circle only if e2c=1. Therefore, only two solutions lie on the semicircle, y=x2-1,y=-x2-1.

Therefore, it is a circle of radius 1 center at origin the endpoints are-1,0,1,0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Falling Object. The motion of an object moving vertically through the air is governed by the equation\(\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - g - }}\frac{{\bf{g}}}{{{{\bf{V}}^{\bf{2}}}}}\frac{{{\bf{dy}}}}{{{\bf{dt}}}}\left| {\frac{{{\bf{dy}}}}{{{\bf{dt}}}}} \right|\)where y is the upward vertical displacement and V is a constant called the terminal speed. Take \({\bf{g = 32ft/se}}{{\bf{c}}^{\bf{2}}}\)and V = 50 ft/sec. Sketch trajectories in the yv-phase plane for \( - 100 \le {\bf{y}} \le 100, - 100 \le {\bf{v}} \le 100\)starting from y = 0 and y = -75, -50, -25, 0, 25, 50, and 75 ft/sec. Interpret the trajectories physically; why is V called the terminal speed?

In Problems 19–24, convert the given second-order equation into a first-order system by setting v=y’. Then find all the critical points in the yv-plane. Finally, sketch (by hand or software) the direction fields, and describe the stability of the critical points (i.e., compare with Figure 5.12).

d2ydt2+y=0

Suppose the coupled mass-spring system of Problem(Figure 5.31) is hung vertically from support (with mass m2above m1), as in Section4.10, page226.

(a) Argue that at equilibrium, the lower spring is stretched a distance l1from its natural lengthl2, given byl1=m1g/k1.

(b) Argue that at equilibrium, the upper spring is stretched a distancel2=m1+m2g/k2.

(c) Show that ifx1and x2are redefined to be displacements from the equilibrium positions of the masses m1and m2, then the equations of motion are identical with those derived in Problem 1.

In Problems 3 – 18, use the elimination method to find a general solution for the given linear system, where differentiation is with respect to t.

x'+2y=0,x'-y'=0

Feedback System with Pooling Delay. Many physical and biological systems involve time delays. A pure time delay has its output the same as its input but shifted in time. A more common type of delay is pooling delay. An example of such a feedback system is shown in Figure 5.3 on page 251. Here the level of fluid in tank B determines the rate at which fluid enters tank A. Suppose this rate is given byR1t=αV-V2t whereα and V are positive constants andV2t is the volume of fluid in tank B at time t.

  1. If the outflow rate from tank B is constant and the flow rate from tank A into B isR2t=KV1t where K is a positive constant andV1t is the volume of fluid in tank A at time t, then show that this feedback system is governed by the system

dV1dt=αV-V2t-KV1t,dV2dt=KV1t-R3

b. Find a general solution for the system in part (a) whenα=5min-1,V=20L,K=2min-1, and R3=10L/min.

c. Using the general solution obtained in part (b), what can be said about the volume of fluid in each of the tanks as t+?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free