\[\begin{array}{l}\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = 0}}\\\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = 3}}\left( {{\bf{2 - 2t}}} \right){{\bf{e}}^{{\bf{2t - }}{{\bf{t}}^{\bf{2}}}}}{\bf{ = 0}}\end{array}\]
Using the zero-factor principal: if\(ab = 0\)then\(a = 0\)or\(b = 0\),
\[\begin{array}{c}{\bf{3}}\left( {{\bf{2 - 2t}}} \right){\bf{ = 0}}\\{\bf{t = 0}}\end{array}\]
Or
\[\begin{array}{c}{{\bf{e}}^{{\bf{2t - }}{{\bf{t}}^{\bf{2}}}}}{\bf{ = 0}}\\{\bf{2t - }}{{\bf{t}}^{\bf{2}}}{\bf{ = 1}}\\{{\bf{t}}^{\bf{2}}}{\bf{ - 2t + 1 = 0}}\\{\left( {{\bf{t - 1}}} \right)^{\bf{2}}}{\bf{ = 0}}\\{\bf{t = \pm 1}}\end{array}\]
\[\begin{array}{c}\frac{{{\bf{dy}}}}{{{\bf{dt}}}}{\bf{ = 3}}\left( {{\bf{2 - 2t}}} \right){{\bf{e}}^{{\bf{2t - }}{{\bf{t}}^{\bf{2}}}}}\\\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = 3}}\left( {{\bf{ - 2}}} \right){{\bf{e}}^{{\bf{2t - }}{{\bf{t}}^{\bf{2}}}}}{\bf{ + 3}}{\left( {{\bf{2 - 2t}}} \right)^{\bf{2}}}{{\bf{e}}^{{\bf{2t - }}{{\bf{t}}^{\bf{2}}}}}\end{array}\]
At\(t = 1\)
\[\begin{array}{l}\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - 6e + 3}}\left( {{\bf{2 - 2}}} \right){\bf{e}}\\\frac{{{{\bf{d}}^{\bf{2}}}{\bf{y}}}}{{{\bf{d}}{{\bf{t}}^{\bf{2}}}}}{\bf{ = - 6e < 0}}\end{array}\]
It has a maximum at\(t = 1\)
![]()
Therefore the maximum value at t=1.