Chapter 2: Problem 34
Let \(T \in \mathcal{B}(X, Y)\). Prove the following: (i) \(\underline{\operatorname{Ker}(T)}=T^{*}\left(Y^{*}\right)_{\perp}\) and \(\underline{\operatorname{Ker}\left(T^{*}\right)}=T(X)^{\perp}\). (ii) \(\overline{T(X)}=\operatorname{Ker}\left(T^{*}\right)_{\perp}\) and \(\overline{T^{*}\left(Y^{*}\right)} \subset \operatorname{Ker}(T)^{\perp}\) Hint: (i): Assume \(x \in T^{*}\left(Y^{*}\right)_{\perp} .\) Then for any \(g \in Y^{*}\) we have \(g(T(x))=\) \(T^{*}(g)(\underline{x})=0\), and hence \(T(x)=0\). Thus \(x \in \operatorname{Ker}(T)\). (ii): \(\overline{T(X)}=\overline{\operatorname{span}}(T(X))=\left(T(X)^{\perp}\right)_{\perp}=\operatorname{Ker}\left(T^{*}\right)_{\perp}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.