Chapter 1: Problem 27
Let \(X, Y\) be Banach spaces and \(T \in \mathcal{B}(X, Y)\). If there is \(\delta>0\) such that \(\|T(x)\| \geq \delta\|x\|\) for all \(x \in X\), then \(T(X)\) is closed in \(Y .\) Moreover, \(T\) is an isomorphism from \(X\) into \(Y\). Hint: Let \(\left\\{T\left(x_{n}\right)\right\\} \subset T(X)\) be such that \(T\left(x_{n}\right) \rightarrow y\). Then \(\left\\{T\left(x_{n}\right)\right\\}\) is Cauchy and hence also \(\left\\{x_{n}\right\\}\) is Cauchy. By completeness, \(x_{n} \rightarrow x\), so \(T\left(x_{n}\right) \rightarrow T(x)\), by the uniqueness of the limit we get \(y=T(x)\). The inequality we assume implies that \(T\) is one-to-one, so the inverse \(T^{-1}: T(X) \rightarrow X\) is defined and \(\left\|T^{-1}\right\| \leq \frac{1}{\delta}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.