Chapter 3: Problem 11
Let \(f \in C\left(\mathbb{R}^{n}\right)\) be absolutely integrable on \(\mathbb{R}^{n} .\) For real \(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\) we define \(\mathcal{F}[f]\left(\omega_{1}, \ldots, \omega_{n}\right)=\) $$ \frac{1}{(2 \pi)^{n}} \underbrace{\int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi}}_{n \text { times }} f\left(x_{1}, \ldots, x_{n}\right) e^{-i\left(\omega_{1} x_{1}+\cdots+\omega_{n} x_{n}\right)} d x_{1} \cdots d x_{n} . $$ The function \(\mathcal{F}[f]\) (defined on \(\mathbb{R}^{n}\) ) is said to be the multivariate Fourier transform of \(f\). Show that if \(f_{1}, f_{2}, \ldots, f_{n}\) are univariate continuous functions in \(G(\mathbb{R})\), and if $$ f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right) $$ then $$ \mathcal{F}[f]\left(\omega_{1}, \ldots, \omega_{n}\right)=\mathcal{F}\left[f_{1}\right]\left(\omega_{1}\right) \mathcal{F}\left[f_{2}\right]\left(\omega_{2}\right) \cdots \mathcal{F}\left[f_{n}\right]\left(\omega_{n}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.