Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement

For any vectors \({\rm{u}}\)and\({\rm{v}}\)in \({{\rm{V}}_{\rm{3}}}\) and any scalar \({\rm{k,k(u \times v) = (ku) \times v}}{\rm{.}}\)

Short Answer

Expert verified

Therefore, the answer for the given statement isTRUE.

Step by step solution

01

Assumption of Scalar.

Assume\({\rm{u = }}\left\langle {{{\rm{u}}_{\rm{1}}}{\rm{,}}{{\rm{u}}_{\rm{2}}}{\rm{,}}{{\rm{u}}_{\rm{3}}}} \right\rangle {\rm{,v = }}\left\langle {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\rangle {\rm{,}}\)then\({\rm{ku = }}\left\langle {{\rm{k}}{{\rm{u}}_{\rm{1}}}{\rm{,k}}{{\rm{u}}_{\rm{2}}}{\rm{,k}}{{\rm{u}}_{\rm{3}}}} \right\rangle \)and

\({\rm{(ku) \times v = }}\left| {\begin{aligned}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{\rm{k}}{{\rm{u}}_{\rm{1}}}}&{{\rm{k}}{{\rm{u}}_{\rm{2}}}}&{{\rm{k}}{{\rm{u}}_{\rm{3}}}}\\{{{\rm{v}}_{\rm{1}}}}&{{{\rm{v}}_{\rm{2}}}}&{{{\rm{v}}_{\rm{3}}}}\end{aligned}} \right|\)

02

Getting Left-hand-Side.

If one row in a determinant has a common factor, we are able to divide that row via that factor and locate it outside the determinant.

\(\begin{aligned}{c}{\rm{ = k}}\left| {\begin{aligned}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{{\rm{u}}_{\rm{1}}}}&{{{\rm{u}}_{\rm{2}}}}&{{{\rm{u}}_{\rm{3}}}}\\{{{\rm{v}}_{\rm{1}}}}&{{{\rm{v}}_{\rm{2}}}}&{{{\rm{v}}_{\rm{3}}}}\end{aligned}} \right|\\{\rm{ = k(u \times v)}}\end{aligned}\)

Thus, the given statement is TRUE.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free