Chapter 10: Q8E (page 598)
Graph the curve with parametric equations \(x = cost,\;y = sin3t,\;z = sint\). Find the total length of this curve correct to four decimal places.
\(L \approx 13.9744\)s
Short Answer
The length of the given curve is, .
Chapter 10: Q8E (page 598)
Graph the curve with parametric equations \(x = cost,\;y = sin3t,\;z = sint\). Find the total length of this curve correct to four decimal places.
\(L \approx 13.9744\)s
The length of the given curve is, .
All the tools & learning materials you need for study success - in one app.
Get started for freeTo find a dot product between \({\rm{a}}\) and \({\rm{b}}\).
(a) To find the parallel unit vectors to the tangent line of \(y = 2\sin x\).
(b) To find the perpendicular unit vectors to the tangent line of \(y = 2\sin x\).
(c) To sketch curve of \(y = 2\sin x\) along with vectors \( \pm \frac{1}{2}({\bf{i}} + \sqrt 3 {\bf{j}})\) and \( \pm \frac{1}{2}(\sqrt 3 {\bf{i}} - {\bf{j}})\).
To determine whether the given vectors are orthogonal, parallel, or neither.
(a) For vector\({\rm{a}} = \langle - 5,3,7\rangle \)and\({\rm{b}} = \langle 6, - 8,2\rangle \)
(b) For vector\(a = \langle 4,6\rangle \)and\(b = \langle - 3,2\rangle \)
(c) For vector\({\bf{a}} = - {\bf{i}} + 2{\bf{j}} + 5{\bf{k}}\)and\({\bf{b}} = - 3{\bf{i}} + 4{\bf{j}} - {\bf{k}}\)
(d) For vector\({\bf{a}} = 2{\bf{i}} + 6{\bf{j}} - 4{\bf{k}}\)and\({\bf{b}} = - 3{\bf{i}} - 9{\bf{j}} + 6{\bf{k}}\)
Find the parametric equations for the line of intersection of the planes \(x + 2y + 3z = 1\) and \(x - y + z = 1\) and the symmetric equations for the line of intersection of the planes \(x + 2y + 3z = 1\) and \(x - y + z = 1\).
(a) Find the symmetric equations for the line that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle \).
(b) Find the point at which the line (that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle )\) intersects the \(xy\)-plane, the point at which the line (that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle )\) intersects the \(yz\)-plane and the point at which the line (that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle )\) intersects the \(xz\)-plane.
What do you think about this solution?
We value your feedback to improve our textbook solutions.