Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the cross-product between\(a\)and\(b\)and verify\(a \times b\)is orthogonal to both\(a\)and\(b\).

Short Answer

Expert verified

\(a \times b\) is \((1 - t){\rm{i}} + \left( {{t^3} - {t^2}} \right){\rm{k}}\)And it is orthogonal to both\(a\) and\(b.\)

Step by step solution

01

The cross-product formula.

Consider the given expression to find the cross-product of\(a\)and\(b.\)

\({\rm{a}} \times {\rm{b}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|\) …… (1)

02

Use the cross-product formula for calculation.

Consider to verify\(a \times b\) is orthogonal to\(a.\)

\((a \times b) \cdot a = 0\)

Consider to verify\(a \times b\)is orthogonal to\(b.\)
\((a \times b) \cdot b = 0\)

In equation (1), substitute\(t{\rm{ for }}{a_1},\cos t{\rm{ for }}{a_2},\sin t{\rm{ for }}{a_3},1{\rm{ for }}{b_1}, - \sin t{\rm{ for }}{b_2}\)and\(\cos t{\rm{ for }}{b_3}{\rm{. }}\)

\(\begin{array}{l}{\rm{a}} \times {\rm{b}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\t&1&{\frac{1}{t}}\\{{t^2}}&{{t^2}}&1\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}1&{\frac{1}{t}}\\{{t^2}}&1\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}t&{\frac{1}{t}}\\{{t^2}}&1\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{c}}t&1\\{{t^2}}&{{t^2}}\end{array}} \right|{\rm{k}}\\ = (1 - t){\rm{i}} - (t - t){\rm{j}} + \left( {{t^3} - {t^2}} \right){\rm{k}}\\ = (1 - t){\rm{i}} + \left( {{t^3} - {t^2}} \right){\rm{k}}\end{array}\)

Thus, the\(a \times b\) is\((1 - t){\rm{i}} + \left( {{t^3} - {t^2}} \right){\rm{k}}\)

For \((a \times b) \cdot a\).

Substitute\((1 - t){\rm{i}} + \left( {{t^3} - {t^2}} \right){\rm{k for a}} \times {\rm{b}}\) and\(\left\langle {t,1,\frac{1}{t}} \right\rangle {\rm{ for a}}\)

\(\begin{aligned}{l}({\rm{a}} \times {\rm{b}}) \cdot {\rm{b}} = \left( {(1 - t){\rm{i}} + \left( {{t^3} - {t^2}} \right){\rm{k}}} \right) \cdot \left\langle {{t^2},{t^2},1} \right\rangle \\\begin{array}{*{20}{c}}{ = \left( {(1 - t){\rm{i}} + 0{\rm{j}} + \left( {{t^3} - {t^2}} \right){\rm{k}}} \right) \cdot \left( {{t^2}{\rm{i}} + {t^2}{\rm{j}} + {\rm{k}}} \right)}\\{ = {t^2} - {t^3} + 0 + {t^3} - {t^2}}\\{ = 0}\end{array}\\\end{aligned}\)

For\((a \times b) \cdot b\)

Substitute\((1 - t){\rm{i}} + \left( {{t^3} - {t^2}} \right){\rm{k for a}} \times {\rm{b}}\) and\(\left\langle {{t^2},{t^2},1} \right\rangle {\rm{ for b}}{\rm{. }}\).

\(\begin{array}{l}({\rm{a}} \times {\rm{b}}) \cdot {\rm{b}} = \left( {(1 - t){\rm{i}} + \left( {{t^3} - {t^2}} \right){\rm{k}}} \right) \cdot \left\langle {{t^2},{t^2},1} \right\rangle \\ = \left( {(1 - t){\rm{i}} + 0{\rm{j}} + \left( {{t^3} - {t^2}} \right){\rm{k}}} \right) \cdot \left( {{t^2}{\rm{i}} + {t^2}{\rm{j}} + {\rm{k}}} \right)\\ = {t^2} - {t^3} + 0 + {t^3} - {t^2}\\ = 0\end{array}\)

\((a \times b) \cdot b = 0\)

As\((a \times b) \cdot a\) and\((a \times b) \cdot b\) is equal to\(0\), it satisfies the condition of orthogonal.

Thus, the\(a \times b\)is orthogonal to both\(a\) and\(b.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Find whether the statement (Two lines parallel to a third line are parallel) is true or false in \({R^3}\).

(b) Find whether the statement (Two lines perpendicular to a third line are parallel) is true or false in \({R^3}\).

(c) Find whether the statement (Two planes parallel to a third plane are parallel) is true or false in \({R^3}\).

(d) Find whether the statement (Two planes perpendicular to a third plane are parallel) is true or false in \({R^3}\).

(e) Find whether the statement (Two lines parallel to a plane are parallel) is true or false in \({R^3}\).

(f) Find whether the statement (Two lines perpendicular to a plane are parallel) is true or false in \({R^3}\).

(g) Find whether the statement (Two planes parallel to a line are parallel) is true or false in \({R^3}\).

(h) Find whether the statement (Two planes perpendicular to a line are parallel) is true or false in \({R^3}\).

(i) Find whether the statement (Two planes either intersect or are parallel) is true or false in \({R^3}\).

(j) Find whether the statement (Two line either intersect or are parallel) is true or false in \({R^3}\).

(k) Find whether the statement (A plane and line either intersect or are parallel) is true or false in \({R^3}\).

Find the parametric equations for the line through the point \((2,1,0)\) and perpendicular to both vectors \(i + j\) and \(j + k\) and the symmetric equations for the line through the point \((2,1,0)\) and perpendicular to both vectors \(i + j\) and \(j + k\).

To find the angle between vectors \(a\) and \(b\) vectors.

(a) To find the parallel unit vectors to the tangent line of \(y = 2\sin x\).

(b) To find the perpendicular unit vectors to the tangent line of \(y = 2\sin x\).

(c) To sketch curve of \(y = 2\sin x\) along with vectors \( \pm \frac{1}{2}({\bf{i}} + \sqrt 3 {\bf{j}})\) and \( \pm \frac{1}{2}(\sqrt 3 {\bf{i}} - {\bf{j}})\).

(a) Determine whether expression \(a \cdot (b \times c)\) is meaningful or meaningless.

(b) Determine whether expression \(a \times (b \cdot c)\) is meaningful or meaningless.

(c) Determine whether expression \({\rm{a}} \times ({\rm{b}} \times {\rm{c}})\) is meaningful or meaningless.

(d) Determine whether expression \(a \cdot (b \cdot c)\) is meaningful or meaningless.

(e) Determine whether expression \((a \cdot b) \times (c \cdot d)\) is meaningful or meaningless.

(f) Determine whether expression \((a \times b) \cdot (c \times d)\) is meaningful or meaningless.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free