Now, subtract and add 1 to simplify the function and use table of the elementary integrals,
\({\bf{j}}\int {\frac{t}{{1 - t}}} dt = {\bf{j}}\int {\frac{{(t - 1) + 1}}{{1 - t}}} dt\)
\( = {\bf{j}}\int {\left( {\frac{{t - 1}}{{1 - t}} + \frac{1}{{1 - t}}} \right)} dt\)
\( = {\bf{j}}\int {\left( { - 1 + \frac{1}{{1 - t}}} \right)} dt\)
\( = {\bf{j}}\int {\left( { - 1 - \frac{1}{{t - 1}}} \right)} dt\)
\( = {\bf{j}}\left( { - t - \ln |t - 1| + {c_2}} \right)\)
The next component is,
\({\bf{k}}\int {\frac{1}{{\sqrt {1 - {t^2}} }}} dt = {\bf{k}}\left( {{{\sin }^{ - 1}}t + {c_3}} \right)\)
Combining all three components together, we get,
\(\vec C = \left( {{c_1},{c_2},{c_3}} \right) = i{c_1} + j{c_2} + k{c_3}\)
\(\int {\left( {t{{\rm{e}}^{2t}}{\bf{i}} + \frac{t}{{1 - t}}{\bf{j}} + \frac{1}{{\sqrt {1 - {t^2}} }}{\bf{k}}} \right)} dt = {\bf{i}}\frac{{{{\rm{e}}^{2t}}(2t - 1)}}{4} + {\bf{j}}( - t - \ln |t - 1|) + {\bf{k}}{\sin ^{ - 1}}t + \vec C\)