Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral.

\(\int {\left( {t{e^{2t}}i + \frac{t}{{1 - t}}j + \frac{1}{{\sqrt {1 - {t^2}} }}k} \right)} dt\)

Short Answer

Expert verified

Therefore, the solution is \(\int {\left( {t{{\rm{e}}^{2t}}{\bf{i}} + \frac{t}{{1 - t}}{\bf{j}} + \frac{1}{{\sqrt {1 - {t^2}} }}{\bf{k}}} \right)} dt = {\bf{i}}\frac{{{{\rm{e}}^{2t}}(2t - 1)}}{4} + {\bf{j}}( - t - \ln |t - 1|) + {\bf{k}}{\sin ^{ - 1}}t + \vec C\)

Step by step solution

01

Step 1: Given information

The given value is:

\(\int {\left( {t{e^{2t}}{\bf{i}} + \frac{t}{{1 - t}}{\bf{j}} + \frac{1}{{\sqrt {1 - {t^2}} }}{\bf{k}}} \right)} dt\)

02

Evaluate the provided integral

Integrate the given integral component-wise, that is,

\(\int {\left( {t{{\rm{e}}^{2t}}{\bf{i}} + \frac{t}{{1 - t}}{\bf{j}} + \frac{1}{{\sqrt {1 - {t^2}} }}{\bf{k}}} \right)} dt = {\bf{i}}\int t {{\rm{e}}^{2t}}dt + {\bf{j}}\int {\frac{t}{{1 - t}}} dt + {\bf{k}}\int {\frac{1}{{\sqrt {1 - {t^2}} }}} dt\)

Now, according to integration by parts rule, we know that:

\(\int f \cdot {g^\prime } = fg - \int {{f^\prime }} \cdot g\)

\(f(t) = t,{g^\prime }(t) = {{\rm{e}}^{2t}}\)

\({f^\prime }(t) = 1,g(t) = \frac{{{{\rm{e}}^{2t}}}}{2}\)

This implies,

\({\bf{i}}\int t {{\rm{e}}^{2t}}dt = t \cdot \frac{{{{\rm{e}}^{2t}}}}{2}{\bf{i}} - \int 1 \cdot \frac{{{{\rm{e}}^{2t}}}}{2} \cdot dt \cdot {\bf{i}} = t \cdot \frac{{{{\rm{e}}^{2t}}}}{2}{\bf{i}} - \frac{{{{\rm{e}}^{2t}}}}{4}{\bf{i}} = \frac{{{{\rm{e}}^{2t}}(2t - 1)}}{4}{\bf{i}}\)

03

Simplify the function

Now, subtract and add 1 to simplify the function and use table of the elementary integrals,

\({\bf{j}}\int {\frac{t}{{1 - t}}} dt = {\bf{j}}\int {\frac{{(t - 1) + 1}}{{1 - t}}} dt\)

\( = {\bf{j}}\int {\left( {\frac{{t - 1}}{{1 - t}} + \frac{1}{{1 - t}}} \right)} dt\)

\( = {\bf{j}}\int {\left( { - 1 + \frac{1}{{1 - t}}} \right)} dt\)

\( = {\bf{j}}\int {\left( { - 1 - \frac{1}{{t - 1}}} \right)} dt\)

\( = {\bf{j}}\left( { - t - \ln |t - 1| + {c_2}} \right)\)

The next component is,

\({\bf{k}}\int {\frac{1}{{\sqrt {1 - {t^2}} }}} dt = {\bf{k}}\left( {{{\sin }^{ - 1}}t + {c_3}} \right)\)

Combining all three components together, we get,

\(\vec C = \left( {{c_1},{c_2},{c_3}} \right) = i{c_1} + j{c_2} + k{c_3}\)

\(\int {\left( {t{{\rm{e}}^{2t}}{\bf{i}} + \frac{t}{{1 - t}}{\bf{j}} + \frac{1}{{\sqrt {1 - {t^2}} }}{\bf{k}}} \right)} dt = {\bf{i}}\frac{{{{\rm{e}}^{2t}}(2t - 1)}}{4} + {\bf{j}}( - t - \ln |t - 1|) + {\bf{k}}{\sin ^{ - 1}}t + \vec C\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the parametric equations for the line of intersection of the planes \(x + 2y + 3z = 1\) and \(x - y + z = 1\) and the symmetric equations for the line of intersection of the planes \(x + 2y + 3z = 1\) and \(x - y + z = 1\).

(a) Find the magnitude of cross product\(|a \times b|\).

(b) Check whether the components of \(a \times b\) are positive, negative or 0.

(a) Determine whether expression \(a \cdot (b \times c)\) is meaningful or meaningless.

(b) Determine whether expression \(a \times (b \cdot c)\) is meaningful or meaningless.

(c) Determine whether expression \({\rm{a}} \times ({\rm{b}} \times {\rm{c}})\) is meaningful or meaningless.

(d) Determine whether expression \(a \cdot (b \cdot c)\) is meaningful or meaningless.

(e) Determine whether expression \((a \cdot b) \times (c \cdot d)\) is meaningful or meaningless.

(f) Determine whether expression \((a \times b) \cdot (c \times d)\) is meaningful or meaningless.

(a) Find the symmetric equations for the line that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle \).

(b) Find the point at which the line (that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle )\) intersects the \(xy\)-plane, the point at which the line (that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle )\) intersects the \(yz\)-plane and the point at which the line (that passes through the point \((1, - 5,6)\) and parallel to the vector \(\langle - 1,2, - 3\rangle )\) intersects the \(xz\)-plane.

Show the equation \(0 \times {\rm{a}} = 0 = {\rm{a}} \times 0\) for any vector \({\rm{a}}\) in \({V_3}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free