\(u = t\;\;\;du = dt\)
\(dv = \sin \pi tdt\;\;\;v = - \frac{1}{\pi }\cos \pi t\)
\(\int_1^2 t \sin \pi tdt = \left( {t \cdot - \frac{1}{\pi }\cos \pi t} \right)_1^2 - \int_1^2 - \frac{1}{\pi }\cos \pi tdt\)
\( = \left( { - \frac{2}{\pi }\cos (2\pi ) - \left( { - \frac{1}{\pi }\cos \pi } \right)} \right) + \frac{1}{\pi }\left( {\frac{1}{\pi }\sin \pi t} \right)_1^2\)
\( = \left( { - \frac{2}{\pi }(1) - \left( { - \frac{1}{\pi }( - 1)} \right)} \right) + \frac{1}{\pi }(0 - 0)\)
\( = \left( { - \frac{2}{\pi } - \frac{1}{\pi }} \right) + 0\)
\( = - \frac{3}{\pi }\)
Reassemble:
\(\int_1^2 {\left( {{t^2}{\bf{i}} + t\sqrt {t - 1} {\bf{j}} + t\sin \pi t{\bf{k}}} \right)} dt = \frac{7}{3}{\bf{i}} + \frac{{16}}{{15}}{\bf{j}} - \frac{3}{\pi }{\bf{k}}\)