\({S_1} = \int_0^{\frac{\pi }{2}} {{{\sin }^2}} t\cos tdt = \left| {\begin{array}{*{20}{c}}u& = &{{{\sin }^2}t}\\{du}& = &{2\sin t\cos tdt}\\v& = &{\int {\cos } tdt = \sin t}\end{array}} \right|\)
\({S_1} = \left. {\left( {{{\sin }^2}t \cdot \sin t} \right)} \right|_0^{\frac{\pi }{2}} - \int_0^{\frac{4}{2}} {\sin } t \cdot 2\sin t\cos tdt\)
\({S_1} = \left. {{{\sin }^3}t} \right|_0^{\frac{\pi }{2}} - 2\underbrace {\int_0^{\frac{\pi }{2}} {{{\sin }^2}} t\cos tdt}_{{S_1}}\)
\({S_1} = {\sin ^3}\frac{\pi }{2} - {\sin ^3}(0) - 2{S_1}\)
\(3{S_1} = 1 \Rightarrow {S_1} = \frac{1}{3}\)
\({S_2} = \int_0^{\frac{\pi }{2}} {\sin } t{\cos ^2}tdt = \left| {\begin{array}{*{20}{c}}u& = &{{{\cos }^2}t}\\{du}& = &{ - 2\cos t\sin tdt}\\v& = &{\int {\sin } tdt = - \cos t}\end{array}} \right|\)
\({S_2} = - \left. {{{\cos }^3}t} \right|_0^{\frac{\pi }{2}} + \int_0^{\bar 2} {\cos } t \cdot ( - 2\cos t\sin t)dt\)
\({S_2} = - \left. {{{\cos }^3}t} \right|_0^{\frac{\pi }{2}} - 2\underbrace {\int_0^{\frac{\pi }{2}} {{{\cos }^2}} t\sin tdt}_{{S_2}}\)
\({S_2} = - {\cos ^3}\frac{\pi }{2} + {\cos ^3}(0) - 2{S_2}\)
\(3{S_2} = 1 \Rightarrow {S_2} = \frac{1}{{\bf{3}}}\)