Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the dot product of the vector\(a\)and\(b\)and verify\(a \times b\)is orthogonal on both\(a\)and\(b.\)

Short Answer

Expert verified

The cross product of vectors \(a\)and \(b\)is \(\frac{1}{2}i - j + \frac{3}{2}k.\)

Step by step solution

01

The cross product formula.

If the vectors\({\bf{a}} = \left\langle {{a_1},{a_2},{a_3}} \right\rangle \)and\({\bf{b}} = \left\langle {{b_1},{b_2},{b_3}} \right\rangle {\rm{,}}\)then the cross product of\({\bf{a}}\)and\({\bf{b}}\)is\({\rm{a}} \times {\rm{b}} = \left| {\begin{array}{*{20}{c}}{\rm{i}}&{\rm{j}}&{\rm{k}}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|\).

02

Use the cross product formula for calculation.

The two given vectors are\({\rm{a}} = {\rm{i}} - {\rm{j}} - {\rm{k}}\)and\({\rm{b}} = \frac{1}{2}{\bf{i}} + {\rm{j}} + \frac{1}{2}{\rm{k}}\).

Apply the formula with\({a_1} = 1,{a_2} = - 1,{a_3} = - 1,{b_1} = \frac{1}{2},{b_2} = 1,\)and\({b_3} = \frac{1}{2}\)and obtain the cross product of two vectors.

\(\begin{array}{l}a \times b = \left| {\begin{array}{*{20}{c}}i&j&k\\1&{ - 1}&{ - 1}\\{\frac{1}{2}}&1&{\frac{1}{2}}\end{array}} \right|\\ = \left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\1&{\frac{1}{2}}\end{array}} \right|{\rm{i}} - \left| {\begin{array}{*{20}{c}}1&{ - 1}\\{\frac{1}{2}}&{\frac{1}{2}}\end{array}} \right|{\rm{j}} + \left| {\begin{array}{*{20}{c}}1&{ - 1}\\{\frac{1}{2}}&1\end{array}} \right|{\rm{k}}\\ = \left( { - \frac{1}{2} + 1} \right){\rm{i}} - \left( {\frac{1}{2} + \frac{1}{2}} \right){\rm{j}} + \left( {1 + \frac{1}{2}} \right){\rm{k}}\\ = \frac{1}{2}{\rm{i}} - {\rm{j}} + \frac{3}{2}{\rm{k}}\end{array}\)

Thus, the cross product of vectors\(a\)and\(b\)is\(\frac{1}{2}i - j + \frac{3}{2}k.\)

Note that the cross product\(a \times b\)is orthogonal to both\(a\)and\(b\)if\((a \times b) \cdot a = 0\)and\((a \times b) \cdot b = 0\).

Calculate the vector value\((a \times b) \cdot a\)as follows.

Substitute\({\rm{a}} \times {\rm{b}} = \frac{1}{2}{\rm{i}} - {\rm{j}} + \frac{3}{2}{\rm{k}}\)and\({\rm{a}} = {\rm{i}} - {\rm{j}} - {\rm{k in }}({\rm{a}} \times {\rm{b}}) \cdot {\rm{a}}\)and obtain the dot product as follows

Calculate the vector value\((a \times b) \cdot b\)as follows.

Substitute\({\rm{a}} \times {\rm{b}} = 11{\rm{i}} + 14{\rm{j}} - 2{\rm{k}}\)and\({\rm{b}} = \frac{1}{2}{\bf{i}} + {\rm{j}} + \frac{1}{2}{\rm{k in }}({\rm{a}} \times {\rm{b}}) \cdot {\rm{b}}\)and obtain the dot product as follows.

Thus, the cross product\(a \times b\)is orthogonal on both\(a\) and\(b.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free